Presentation is loading. Please wait.

Presentation is loading. Please wait.

POLYMERIC IMPLANTS Biodegradable suture Wound dressing

Similar presentations


Presentation on theme: "POLYMERIC IMPLANTS Biodegradable suture Wound dressing"— Presentation transcript:

1 POLYMERIC IMPLANTS Biodegradable suture Wound dressing
Intraocular Lens Contact Lens

2

3

4 Some Commonly Used Polymers
Material Applications Silicone rubber Catheters, tubing Dacron Vascular grafts Cellulose Dialysis membranes Poly(methyl methacrylate) Intraocular lenses, bone cement Polyurethanes Catheters, pacemaker leads Hydogels Opthalmological devices, Drug Delivery Collagen (reprocessed) Opthalmologic applications, wound dressings

5 Polymer Devices Advantages: Disadvantages: Examples:
Some joint replacement articulating surfaces Spinal cages Biodegradable bone plates for low load regions Biodegradable sutures See Table 1.1 of Park Hip joint Spinal cage for spine fusion Bone plates

6 Mechanical Properties: Why is important to study for all biomaterials?
Determines how well it will work (or not work) for a given device. One major factor is the modulus of the material. metal polymer polymer Toe implant ______________ hydrogel ____________

7

8 Polymers Terminology: copolymer: polymers of two mer types
random · · ·-B-A-B-A-B-B-A-· · · alternating· · ·-A-B-A-B-A-B-A-· · · block · · ·-A-A-A-A-B-B-B-· · · heteropolymer: polymers of many mer types COPOLYMER

9 Polymers Structure Linear Branched Crosslinked

10

11 Synthetic Polymers Biostable Polymers Biodegradable Synthetic Polymers
Polyamides Polyurethanes Polyethylene Poly(vinylchloride) Poly(hydroxyethylmethacrylate) Poly(methylmethacrylate) Poly(tetrafluoroethylene) Poly(dimethyl siloxane) Poly(vinylalcohol) Poly(ethylenglycol) Biodegradable Synthetic Polymers Poly(alkylene ester)s PLA, PCL, PLGA Poly(aromatic/aliphatic ester)s Poly(amide-ester)s Poly(ester-urethane)s Polyanhydrides Polyphosphazenes Stimuli Responsive Poly(ethylene oxide-co-propilene oxide) Poly(methylvinylether) Poly(N-alkyl acrylamide)s Poly(phosphazone)s

12 Polymers Bioinert Biodegradable Polymers Natural Synthetic

13

14

15

16

17 Synthetic Biomaterials
POLYMERS: Silicones, Gore-tex (ePTFE), Polyethylenes (LDPE,HDPE,UHMWPE,) Polyurethanes, Polymethylmethacrylate, Polysulfone, Delrin Uses: Orthopedics, artificial tendons, catheters, vascular grafts, facial and soft tissue reconstruction COMPOSITES: CFRC, self reinforced, hybrids Uses: Orthopedics, scaffolds HYDROGELS: Cellulose, Acrylic co-polymers Uses: Drug delivery, vitreous implants, wound healing RESORBABLES: Polyglycolic Acid, Polylactic acid, polyesters Uses: sutures, drug delivery, in-growth, tissue engineering

18

19

20

21 Polymers: Biomedical Applications
Polyethylene (PE) five density grades: ultrahigh, high, low, linear low and very low density UHMWPE and HDPE more crystalline UHMWPE has better mechanical properties, stability and lower cost UHMWPE can be sterilized (C2H4)nH2

22 Polymers: Biomedical Applications
UHMWPE: Acetabular caps in hip implants and patellar surface of knee joints. HDPE used as pharmaceutical bottles, fabrics. Others used as bags, pouches, tubes etc.

23 Artificial Hip Joints (UHMWPE)

24 Polymers: Biomedical Applications
Polymethylmethacrylate (PMMA, lucite, acrylic, plexiglas) (C5O2H8)n acrylics transparency tough biocompatible Used in dental restorations, membrane for dialysis, ocular lenses, contact lenses, bone cements

25 Intraocular Lens 3 basic materials - PMMA, acrylic, silicone

26 Polymers: Biomedical Applications
Polyamides (PA, nylon) PA 6 : [NH−(CH2)5−CO]n made from ε-Caprolactam high degree of crystallinity interchain hydrogen bonds provide superior mechanical strength (Kevlar fibers stronger than metals) plasticized by water, not good in physiological environment Used as sutures

27 Polymers: Biomedical Applications
Polyvinylchloride (PVC) (monomer residue must be very low) Cl side chains amorphous, hard and brittle due to Cl metallic additives prevent thermal degradation Used as blood and solution bags, packaging, IV sets, dialysis devices, catheter, bottles, cannulae

28 Polymers: Biomedical Applications
Polypropylene (PP) (C3H6)n properties similar to HDPE good fatigue resistance Used as syringes, oxygenator membranes, sutures, fabrics, vascular grafts Polyesters (polymers which contain the ester functional group in their main chain) PET (C10H8O4)n hydrophobic (beverage container PET) molded into complex shapes Used as vascular grafts, sutures, heart valves, catheter housings

29 Polymers: Biomedical Applications
Polytetrafluoroethylene (PTFE, teflon) (C2F4)n low coefficient of friction (low interfacial forces between its surface and another material) very low surface energy high crystallinity low modulus and strength difficult to process catheters, artificial vascular grafts

30 Polymers: Biomedical Applications
Polyurethanes block copolymer structure good mechanical properties good biocompatibility tubing, vascular grafts, pacemaker lead insulation, heart assist balloon pumps

31 Polyurethanes A urethane has an ester group and amide group bonded to the same carbon. Urethanes can be prepare by treating an isocyanate with an alcohol. Polyurethanes are polymers that contain urethane groups.

32 Synthetic vascular grafts from W.L.Gore
Often the surgery will be 4 – 5 grafts, or as many as 9!! Synthetic not good for small diam. because they get clogged. Many people who need vascular grafts have pre-existing vascular conditions, can’t take another graft or not healthy, so need a substitute sdVG.

33 Useful Definitions Biodegradable Undergoes degradation in the body
- Degradation products are harmless and can be secreted naturally water Lactic acid PLLA bone plates

34 Polymers: Biomedical Applications
Rubbers latex, silicone good biocompatibility Used as maxillofacial prosthetics

35 Biomedical polymer Application Poly(ethylene) (PE) Low density (LDPE) High density (HDPE) Ultra high molecular weight (UHMWPE) Bags, tubing Nonwoven fabric, catheter Orthopedic and facial implants Poly(methyl methacrylate) (PMMA) Intraocular lens, dentures, bone cement Poly(vinyl chloride) (PVC) Blood bags, catheters, cannulae Poly(ethylene terephthalate) (PET) Artificial vascular graft, sutures, heart valves Poly(esters) Bioresorbable sutures, surgical products, controlled drug release Poly(amides) (Nylons) Catheters, sutures Poly(urethanes) (PU) Coat implants, film, tubing Table The clinical uses of some of the most common biomedical polymers relate to their chemical structure and physical properties.

36 Hydrogels Water-swollen, crosslinked polymeric structure produced by reactions of monomers or by hydrogen bonding Hydrophilic polymers that can absorb up to thousands of times their dry weight in H2O Three-dimensional insoluble polymer networks

37 Applications of Hydrogels
Soft contact lenses Pills/capsules Bioadhesive carriers Implant coatings Transdermal drug delivery Electrophoresis gels Wound healing Chromatographic packaging material

38 Types of Hydrogels Classification Method of preparation Ionic charge
Homo-polymer, Copolymer, Multi-polymer, Interpenetrating polymeric Ionic charge Neutral, Catatonic, Anionic, Ampholytic Physical structure Amorphous, Semi-crystalline, Hydrogen-bonded

39 Types of Gelation Physical , Chemical
ژله‌اي شدن فيزيكي: زنجيرهاي پليمر از طريق واكنش‌هاي يوني، پيوند هيدروژني، درهم گره خوردن مولكولي يا از راه طبيعت آب‌گريزي ماده اتصال مي‌يابند. ژله‌اي شدن شيميايي: زنجيرهاي هيدروژل با پيوند كووالانت به يكديگر متصل شده‌اند. در اين فرآيند، روش‌هايي نظير تابش، افزودن اتصال‌دهنده‌هاي عرضي شيميايي و تركيبات واكنش‌گر چند منظوره به كار مي‌روند.

40 Types of Hydrogels Natural Polymers
Dextran, Chitosan, Collagen, Alginate, Dextran Sulfate, . . . Advantages Generally have high biocompatibility Intrinsic cellular interactions Biodegradable Cell controlled degradability Low toxicity byproducts Disadvantages Mechanical Strength Batch variation Animal derived materials may pass on viruses

41 Types of Hydrogels Synthetic Polymers
PEG-PLA-PEG, Poly (vinyl alcohol) Advantages Precise control and mass produced Can be tailored to give a wide range of properties (can be designed to meet specific needs) Low immunogenecity Minimize risk of biological pathogens or contaminants Disadvantages Low biodegradability Can include toxic substances Combination of natural and synthetic Collagen-acrylate, P (PEG-co-peptides)

42 Properties of Hydrogels
Swelling properties influenced by changes in the environment pH, temperature, ionic strength, solvent composition, pressure, and electrical potential Can be biodegradable, bioerodible, and bioabsorbable Can degrade in controlled fashion

43 Properties of Hydrogels
Pore Size Fabrication techniques Shape and surface/volume ratio H2O content Strength Swelling activation

44 Advantages of Hydrogels
Environment can protect cells and other substances (i.e. drugs, proteins, and peptides) Timed release of growth factors and other nutrients to ensure proper tissue growth Good transport properties Biocompatible Can be injected Easy to modify

45 Disadvantages of Hydrogels
Low mechanical strength Hard to handle Difficult to load Sterilization

46 Why Hydrogels ?: Tissue Engineering
Biocompatible H2O content Sterilizibilty Ease of use High mechanical Strength Surface to volume ratio Good cell adhesion High nutrient transport

47 Why Hydrogels?: Cell Culture Systems
Biocompatible substrate Non-toxic and have no immunological responses Cytoarchitecture which favors cell growth Flexibility for cells to rearrange in 3-D orientation Seeded with appropriate growth and adhesion factors Porosity (i.e. channels for nutrients to be delivered)

48 Why Hydrogels?: Cell Culture Systems
Mimic cytomechanical situations 3-D space provides balanced cytoskeleton forces Dynamic loading to promote cell growth Flexibility Provide scaffold for various cells Consistent, reproducible and easy to construct

49 Why Hydrogels?: Drug Delivery
Safe degradation products Biocompatible High loading with ensured molecule efficacy High encapsulation Variable release profile Stable Inexpensive High quality

50 Environment controls mechanisms of swelling:
Hydrogels are network polymers that swell through a variety of mechanisms in an aqueous environment Environment controls mechanisms of swelling: pH, ionic strength, solvent composition, pressure and even electric fields Applications in medicine, engineering, and biology

51 Chitosan Chitosan (2-amino-2deoxy-(1→4)-β-D-glucopyranan), a polyaminosaccharide, obtained by alkaline deacetylation of chitin (the principal component of living organisms such as fungi and crustacea).

52 Chitosan’s key properties:
1) biocompatibility 2) nonantigenicity 3) nontoxicity (its degradation products are known natural metabolites) 4) the ability to improve wound healing/or clot blood 5) the ability to absorb liquids and to form protective films and coatings, and 6) selective binding of acidic liquids, thereby lowering serum cholesterol levels.

53

54 Alginate Guluronic acid Mannuronic acid These products are produced from naturally occurring calcium and sodium salts of alginic acid found in a family of brown seaweed. Alginates are rich in either mannuronic acid or guluronic acid, the relative amount of each influence the amount of exudate absorbed and the shape the dressing will retain.

55

56

57

58 فصل 10 و 11 کتاب زیستمواد، اندامهای مصنوعی و مهندسی بافت


Download ppt "POLYMERIC IMPLANTS Biodegradable suture Wound dressing"

Similar presentations


Ads by Google