Presentation is loading. Please wait.

Presentation is loading. Please wait.

IP Version 6 COMT 222. © 2005 Hans Kruse & Shawn Ostermann, Ohio University 2 Why change IP Number of addresses Routing Table Size Client configuration.

Similar presentations


Presentation on theme: "IP Version 6 COMT 222. © 2005 Hans Kruse & Shawn Ostermann, Ohio University 2 Why change IP Number of addresses Routing Table Size Client configuration."— Presentation transcript:

1 IP Version 6 COMT 222

2 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 2 Why change IP Number of addresses Routing Table Size Client configuration Other stuff that could be done in IPv4 (but not as well)

3 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 3 New IP Header +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Traffic Class | Flow Label | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Payload Length | Next Header | Hop Limit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Source Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Destination Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 4 Address Notation 128 bits = 16 8-bit numbers; cumbersome! new notation uses 8 16-bit numbers, written in hexadecimal Example: –fedc:ba98:7654:3210:f5d9:1106:65fc:66d3 –Omitt leading zeroes, compress one zero run –fddc:8::78:f = fddc:0008:0000:0000:0000:0000:0078:000f –Zone qualifier: fe80::ab:cd%3

5 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 5 Address Allocation Design Revisit the routing table issue –Address hierarchy –Geographic allocation? –Provider allocation Client Configuration –The dentist office metaphor A few devices, no Internet, automatic config. –The loading dock metaphor Hand-held low-end devices on the network

6 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 6 Address allocation Address type Binary prefix IPv6 notation ------------ ------------- ------------ Unspecified 00...0 (128 bits) ::/128 Loopback 00...1 (128 bits) ::1/128 Multicast 11111111 FF00::/8 Link-local unicast 1111111010 FE80::/10 Site-local unicast 1111111011 FEC0::/10 note 1 Local Addresses 1111110 FC00::/7 note 2 Global unicast (everything else) Currently global addresses start with 001, i.e. 2000::/3 (1/8 of the available space), about 70 billion usable addresses Note 1: Site Locals are being removed from the standard Note 2: These addresses are being standardized now

7 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 7 Global Address The Interface ID should follow “modified EUI-64” format, it may beconstructed to be globally unique, or created randomly for privacy reasons. EUI = Extended Unique Identifier; IEEE Trademark site topology (16 bits) interface identifier (64 bits) public topology (45 bits) interface IDsubnetNLA*TLA 001 Note that this precise structure is being deleted and assignments will be left to the RIRs. From Steve Deerings “IPv6 Master Class”

8 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 8 Example - OU 2001:468:b02::/48 –0010 0000 0000 0001 –0000 0100 0110 1000 –0000 1011 0000 0010 TLA: “Generic TLA” Sub-TLA: “Temporary Allocation to OARNet” NLA: OARNet Assignment to OU

9 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 9 “Link Local” Address Prefix FE80::/64

10 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 10 Configuration Based on ICMP6 –Automatic selection of link local address by the host, using the hardware address or another unique ID –Listen for router announcements (neighbor discovery) for site local and global prefixes

11 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 11 Address Types Unicast Multicast Anycast –IPv6 makes use of this for service discovery

12 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 12 Transition Issues Clients need –Operating system changes -- most systems are ready –Application changes –ISP support ISPs need –$$$ for upgrades to the core infrastructure “Flashcut” is not possible How do IPv4 and IPv6 coexist?

13 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 13 Coexistence Dual protocol stacks “tunnels” –Carry IPv6 packets in IPv4 packets –Allows traversal of non-IPv6 capable infrastructure –Allows many IPv6-only devices to reach IPv6 destinations using a single IPv4 address –Useful mainly if all points of interest have IPv6 addresses

14 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 14 Domain Name Service IPv4 uses –A records to translate names to addresses –PTR records to translate addresses to names star.csm.ohiou.edu = 132.235.67.50 50.67.235.132.in-addr.arpa = star.csm.ohiou.edu

15 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 15 DNS continued IPv6 support –AAAA records translate names to IPv6 addresses –PTR records are used as before, but in a different “domain” –To find a name for fedc:ba98:7654:3210:f5d9:1106:65fc:66d3, look at the PTR record for –3.d.6.6.c.f.5.6.6.0.1.1.9.d.5.f.0.1.2.3.4.5.6.7.8.9.a.b.c.d.e.f.ip6.int –Another record type, A6, is no longer supported

16 © 2005 Hans Kruse & Shawn Ostermann, Ohio University 16 Example > www.kame.net Server: boss.cs.ohiou.edu Address: 132.235.1.1 www.kame.net canonical name = apple.kame.net apple.kame.net canonical name = kame220.kame.net kame220.kame.net IPv6 address = 2001:200:0:4819:280:adff:fe71:81fc kame220.kame.net IPv6 address = 3ffe:501:4819:2000:280:adff:fe71:81fc


Download ppt "IP Version 6 COMT 222. © 2005 Hans Kruse & Shawn Ostermann, Ohio University 2 Why change IP Number of addresses Routing Table Size Client configuration."

Similar presentations


Ads by Google