Download presentation
Presentation is loading. Please wait.
Published byDylan Perkins Modified over 11 years ago
1
TU Darmstadt Inertial Confinement Fusion Dieter H.H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG 26-28 Mai 2003
2
TU Darmstadt 2 3 confinement concepts
3
TU Darmstadt 3 Fusion of Hydrogen Isotopes Deuterium und Tritium
4
TU Darmstadt 4 Microballoon Fusion-target
5
TU Darmstadt 5 Principle of inertial fusion
6
TU Darmstadt 6
7
7 n: Particle number density [cm -3 ] r: density [g/cm 3 ] : Confinement time [s] T: Temperature [keV] R: compressed fuel radius Lawson Criterion n 10 14 s/cm 3 R>1g/cm 2 Figure of merit: n T
8
TU Darmstadt 8
9
9 Heavy Ion Target, schematically
10
TU Darmstadt 10 Heavy ion target
11
TU Darmstadt 11 Indirect drive heavy ion target J. Meyer-ter-Vehn
12
TU Darmstadt 12 Indirect drive heavy ion target J. Meyer-ter-Vehn
13
TU Darmstadt 13 Symmetry by radiation shields J. Maruhn, Frankfurt
14
TU Darmstadt 14 National Ignition Facility, LLNL
15
TU Darmstadt 15
16
TU Darmstadt 16 Why heavy ions: Comparison of concepts
17
TU Darmstadt 17 Schematic Fusion Power Plant based on Heavy Ion Beams
18
TU Darmstadt 18 Anforderungen an einen Beschleuniger für die Trägheitsfusion Energie pro Puls: E 5 – 10 MJ Pulslänge:t 5-10 ns Pulsleistung:P 10 15 W Teilchenzahl pro Puls bei E0 = 10 GeV Und Au, Pb, Bi Projektilen: N 10 15
19
TU Darmstadt 19 HIDIF study: Heavy Ion Driverfor Inertial Fusion
20
TU Darmstadt 20 HIDIF
21
TU Darmstadt 21 GSI - Darmstadt
22
TU Darmstadt 22 Present and Future Facilities at GSI
23
TU Darmstadt 23 Energy loss on free and bound electrons
24
TU Darmstadt 24 Conversion of von Laserlight into soft X-rays for Interaction experiments with heavy ions Conversion of von Laserlight into soft X-rays for Interaction experiments with heavy ions High homogeneity dense plasmas M. Roth et al.
25
TU Darmstadt 25 Heavy ion beam & target beam target volume heatinggasdynamic motion
26
TU Darmstadt 26 Final Focus
27
TU Darmstadt Plasma Linse (U. Neuner et al) focal beam spots linear B-field nonlinear B-field
28
TU Darmstadt 28 Nd:Glas Laser Double-pass and Booster Geometry, 31.5cm Beamdiameter: 4-6 kJ Puls Energy @ 10 ns 500 J Puls Energy @ 0.5 ps Petawatt High Energy Laser for Heavy Ion Experiments Introduction
29
TU Darmstadt 29 Intense Laser Beam Matter Interaction Laser Beam High Energy Ions in Laser Plasma
30
TU Darmstadt 30
31
TU Darmstadt 31
32
TU Darmstadt 32 Target Chamber 11.5 MJ stored energy 19 MA peak load current 40 TW electrical power to load 100-250 TW x-ray power 1-1.8 MJ x-ray energy Pulsed-power accelerators with z-pinch loads provide efficient time compression and power amplification Z
33
TU Darmstadt 33 Two complementary approaches to z-pinch-driven capsule implosions are being studied Two 60 MA pinches 380 MJ yield 54 MA pinch 530 MJ yield hohlraum energetics radiation symmetry pulseshaping preheat capsule implosions Key issues Both concepts use hohlraum coupling, symmetry, and capsule scaling physics developed in the indirect-drive laser and ion beam programs Double-ended hohlraum Dynamic hohlraum
34
Recent Progress in ICF Capsule Experiments at Sandia National Laboratories International Workshop on Physics of High Energy Density in Matter 2003 Hirschegg, Austria Tom Mehlhorn, Manager Target & Z-pinch Theory Dept Sandia National Laboratories Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL84000.
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.