Presentation is loading. Please wait.

Presentation is loading. Please wait.

Métodos de kernel. Resumen SVM - motivación SVM no separable Kernels Otros problemas Ejemplos Muchas slides de Ronald Collopert.

Similar presentations


Presentation on theme: "Métodos de kernel. Resumen SVM - motivación SVM no separable Kernels Otros problemas Ejemplos Muchas slides de Ronald Collopert."— Presentation transcript:

1 Métodos de kernel

2 Resumen SVM - motivación SVM no separable Kernels Otros problemas Ejemplos Muchas slides de Ronald Collopert

3 Back to Perceptron Old method, linear solution w T x + b = 0 w T x + b < 0 w T x + b > 0 f(x) = sign(w T x + b)

4 Linear Separators Which of the linear separators is optimal?

5 Classification Margin Distance from example x i to the separator is Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the distance between support vectors. r ρ

6 Maximum Margin Classification Maximizing the margin is good according to intuition and learning theory. Implies that only support vectors matter; other training examples are ignorable. Vapnik: Et< Ea + f(VC/m)

7 SVM formulation

8

9

10

11

12

13

14

15

16

17 SVM formulation - end

18 Kernels What about this problem?

19 Kernels

20

21

22 Any symmetric positive-definite kernel f(u,v) is a dot product in some space. Not matter what it is the space. Kernel algebra → linear combinations of kernels are kernels Open door: kernels for non-vectorial objects

23 Using SVMs

24

25 Summary

26 In practice

27 Otros problemas con kernels

28 Other methods Any Machine Learning method that only depends on inner products of the data can use kernels Lots of methods: kernel-pca, kernel regression, kernel-...

29 Multiclass classification Use ensembles: OVA, OVO. Ovo is more efficient There are some direct multiclass SVM formulations, not better than OVO. Lots of papers, diverse results

30 Regression

31

32 Non-linear regression via kernels A new parameter to set: the tube

33 Novelty detection Classical: use a density function, points below a threshold are outliers Two kernel versions

34 Novelty detection Tax & Duin: Find the minimal hypersphere that contains all the data, points outside are outliers Outlier:

35 Novelty detection Scholkopf et al.: Only for Gaussian Kernel, find the hyperplane with max distance to the origin that left all points in one side. Outlier:

36 Code Some examples in classification (R code)


Download ppt "Métodos de kernel. Resumen SVM - motivación SVM no separable Kernels Otros problemas Ejemplos Muchas slides de Ronald Collopert."

Similar presentations


Ads by Google