Download presentation
Presentation is loading. Please wait.
Published byEileen Cross Modified over 9 years ago
1
INTECH’ April, the 28 th 2005 Mesh Parameterization Bruno Lévy, INRIA, project ALICE INTECH’ April, the 28 th 2005 Mesh Parameterization Bruno Lévy, INRIA, project ALICE
2
Overview 1. Geometry in the ALICE Project: Vision, Background and Goals, Vision, Background and Goals, 2. Parameterization (1998 - 2001), 3. Atlas (2002 - 2003), 4. PGP [Nicolas Ray] (2004 - …)
3
1.Vision From the 70’s …. To the 2000’s ….
4
1.Vision Computer Graphics and 3D modelling Meshesdiscrete Splinescontinuous ScientificVisualization ComputerGraphics NumericalSimulations CADCAM 3D Scanning 3D modelers Numerical Geometry
5
1.Vision The data representation problem
6
1. Background Digital Geometry Processing A new and competitive research areaA new and competitive research area Converting between object representations isConverting between object representations is still an open problem still an open problem [Henri Gouraud, Malcom Sabin] [Henri Gouraud, Malcom Sabin] Need for a mathematical method that ‘understands’ geometry
7
1. Goals Create a « geographic coordinate system »
8
u v RI 3 RI 2 u u ( ( x x,, y y,, z z ) ) x x ( ( u u,, v v ) ) S Object space (3D) Texture space (2D) 2. Parameterization Notion of parameterization
9
RI 3 RI 2 u v PiPi PiPi u i,v i 2. Parameterization Notion of parameterization Survey: [Floater 04]
10
2. Parameterization Demo: Constrained Parameterization Constrained Parameterization [Siggraph 1998 and 2001]
11
2. Parameterization Application: Gridding Grid generation for flow simulators Earth Decision Sciences startup (Paris, Houston, Rio, Dubai) Product: Gocad 3D modeler
12
3. Atlas Notion of atlas Conformal Map : C = || grad(u|T) - i.grad(v|T) || 2 T T Least Squares Conformal Maps [Siggraph 2002]
13
3. Atlas Application: Maya and Blender Least Squares Conformal Maps [Siggraph 02] Alias|Wavefront MAYA 3D modeler Alias|Wavefront MAYA 3D modeler
14
3. Atlas – « Tetris » Packing [ Nicolas Ray] Application: DirectX Lost Area
15
3. Atlas – « Tetris » Packing [ Nicolas Ray] Application: DirectX
16
3. Atlas Applications: X-Mesh VSP-Technology startup Product: X-Mesh (Mesh Manipulation Library)
17
3. Atlas Demo: Normal-mapping
18
3. Atlas Application: Eden Games Courtesy of Eden Games Alone in the Dark
19
4. Periodic Global Parameterization (PGP) Create a « geographic coordinate system »
20
4. PGP The data: a scanned mesh
21
4. PGP Problems: arbitrary topology How can we handle closed surfaces ? How can we parameterize a cylinder ? Global Parameterization [Gu 2002]
22
4. PGP [Nicolas Ray]
23
4. PGP Affine and Complex Manifolds
24
4. PGP More geometry: Principal curvatures
25
4. PGP Integrated vector field K .(p2-p1) Triangle integral
26
4. PGP Integrated vector field Edge equation Triangle equation
27
4. PGP Two problems What do we do for arbitrary topology ? How do we handle arbitrary vector fields ?
28
4. PGP Arbitrary topology cos( ) cos( ) sin( ) U = .(p2-p1) || 2
29
4. PGP Arbitrary Vector Fields Use local expression with rotated vectors
30
4. PGP Periodic Global Parameterization
33
4. PGP Overview of the algorithm Curvature tensor approx. [Cohen-Steiner 02] Vector field smoothing Periodic Global Parameterization Applications:Remeshing,T-Splines… Applications:Remeshing,T-Splines…
34
4. PGP Results Mesh-2-Spline conversion (demo)
35
4. PGP Results Remeshing
37
4. PGP results Remeshing
38
4. PGP Applications Microsoft Research Grant: Geometric Intelligence
39
Conclusions n Digital Geometry Processing: n A scientific challenge: –Solve the 3D representation problem ! n Many possible industrial applications –Video-games –CAD/CAM, reverse engineering –Oil exploration, FEM simulations
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.