Download presentation
Presentation is loading. Please wait.
Published byMatthew Curtis Modified over 9 years ago
1
1 Multi-use Facility
2
2 Occupancy – 140 persons Building Characteristics Single story 20,000 square feet (250’ x 80’) Standard construction
3
3 What we will cover: Types of hydronic heating systems Closed loop perimeter heating Closed loop radiant systems Water source heat pumps Ground source heat pumps Piping methods Constant speed/constant volume Constant speed/variable volume Variable speed/variable volume Retrofit market Significant opportunities! Magna3 advantages
4
4 HW Closed Loop Perimeter/ Fan Coil System Optional Variable Speed Components ∆P Sensor Modulating Control Valve (typ.) Secondary Pump Common Pipe 2-way or Two Position Valve (typ.) Boiler Primary Pumps Expansion Tank Air Separator Balance Valve (typ.) Boiler Load (typ.)
5
Manual balance valve 3-way control valve 2-way control valve Air separator System piping components
6
6 Fan coil VAV box
7
7 HW Closed Loop Radiant Floor/Snow Melt System Radiant Floor or Snow Melt Panels Boiler #2Boiler #1 P1 P2 Secondary Pump Mixing Valve Primary Pumps P1 & P2* Redundant* Expansion Tank Air Separator Common Pipe
8
8 HW Closed Loop Radiant Floor/Snow Melt System
9
9
10
10 Heat Pumps 60ºF HPWS 53ºF HPWR Heat Pump 160ºF HHWR 180ºF HHWS 53ºF CHWR Fan Coil Unit 45ºF CHWS Air 60ºF HPWS 67ºF HPWR 60ºF HPWR 60ºF HPWS Heat Pump Cooling Heating
11
Heat Pump Operation 11 53ºF HPWR Fan Air 60ºF HPWS Heating Water to Refrigerant Heat Exchanger Compressor Reversing Valve Refrigerant Coil Expansion Valve Refrigerant Piping
12
12 Heat Pumps Types Water source Boiler and chiller Ground source Bore field / pond loop / well Hybrid A ground source plus supplemental heating or cooling
13
Closed Circuit Cooling Tower WSHP Buffer Tank ( Optional )) Compression Tank 13 Water Source Heat Pump (WSHP) Boiler WSHP Make-up Water Primary Pumps P1 & P2* Redundant* Expansion Tank Air Separator
14
14 WSHP Components Cooling Towers Boilers
15
15 Ground Source Heat Pump (GSHP) Bore Field GSHP Buffer Tank ( Optional ) Compression Tank GSHP Make-up Water HP Loop Pumps P1 & P2* Redundant* Expansion Tank Air Separator Bore Field Loop Pump
16
16 GSHP
17
17 Hybrid Ground Source Heat Pump Bore Field GSHP Buffer Tank ( Optional ) Compression Tank GSHP Make-up Water HP Loop Pumps P1 & P2* Redundant* Expansion Tank Air Separator Bore Field Loop Pump
18
18 Hydronic Piping Systems Types: Constant Speed/Constant Volume (CS/CV) Piping & equipment requirements Deficiencies Energy usage Constant Speed/Variable Volume (CS/VV) Piping & equipment requirements Advantages Energy usage Variable Speed/Variable Volume (VS/VV) Piping & equipment requirements Advantages Energy usage
19
19 CS/CV Piping System 3-way Valve Load Balance Valve (Typ.) Expansion Tank Air Separator Boiler 2* Boiler 1 Primary Pumps P1 & P2* * Redundant
20
20 CS/CV System Deficiencies High return water temperatures Robs hot water from other coils at part loaded conditions Increases flow Adds additional boilers on line Boiler performance is reduced
21
21 CS/CV System Load for Multi-use Facility: Chicago, IL Plot load profile Select pump for 108 gpm @ 36 ft
22
40 35 30 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 Flow (gpm) Head (ft) 22 108 gpm @ 36 ft CS/CV Pump 97%
23
23 Pump Energy Consumption - CS/CV CS/CV
24
24 CS/VV HW Piping Systems Primary Pumps P1 & P2* *Redundant Return Supply Secondary Pumps P1 & P2* Boiler 1 Boiler 2* Expansion Tank Air Separator
25
25 CS/VV Pumping Systems Add secondary pumps Add common pipe Add system bypass Add 2-way valves Eliminate 3-way valves…or
26
26 CS/VV Pumping Systems Eliminate 3-way valves Disable 3-way valves Shut bypass valve Disconnect bypass pipe Actuator may be undersized for 2-way operation Does this make $ense?
27
40 35 30 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 Flow (gpm) Head (ft) 27 108 gpm @ 36 ft CS/VV Pump Curve 97%
28
28 CS/VV Advantages Lower return water temperatures Minimizes flow to coils Decreases secondary flow Reduces boilers on line Boiler performance is increased Ease of system operation Energy savings Preferred piping method
29
29 Pump Energy Consumption - CS/VV CS/CV CS/VV
30
30 VS/VV Pumping Add: Variable frequency drive (VFD) Programmable logic controller (PLC) Differential pressure sensors (∆P) Direct digital controls (DDC) Save 75% AOC versus CS/CV!
31
31 VS/VV Hot Water Systems Secondary Pumps VSP1 & VSP2* ΔP Sensor Air Separator Expansion Tank *Redundant Return Supply Boiler 1 Boiler 2* VS Pumps And Controls
32
32 Pump Curve Summary CS/CV 108 gpm @ 36 ft CS/VV VS/VV 108 gpm @ 36 ft 54 gpm @ 37 ft 54 gpm @ 9 ft
33
33 108 gpm @ 36 ft Flow (gpm) Head (ft) 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 40 35 30 25 20 15 10 5 0 VS/VV Pump Curve Magna3 100-120
34
34 VS/VV Advantages Optimizes return water temperatures Optimizes flow to coils Decreases secondary flow Reduces boilers on line Boiler performance is increased Ease of system operation Optimum energy savings
35
35 Pump Energy Consumption - VS/VV CS/CV CS/VV VS/VV
36
36 VS/VV Advantages Cost effective design Primary-secondary pumping Common pipe design 2-way valve operation Save 75% of pumping energy over CS/CV systems Save 50% of pumping energy over CS/VV systems
37
37 Additional System Savings Additional sources of energy savings Boiler operation ΔT optimization Sources of first cost savings Pump sizing Boiler sizing Valve sizing Pipe sizing
38
38 VS/VV Pumping Add: Variable frequency drive (VFD) Programmable logic controller (PLC) Differential pressure sensors (∆P) Direct digital controls (DDC) Or add…
39
39 Demand More Magna3!
40
40 HW Systems w/ Magna3 Secondary Pumps VSP1 & VSP2 Primary Pumps MP1 & MP2* *Redundant Return Supply Boiler 1 Boiler 2* Expansion Tank Air Separator Magna3 VS Pumps With Controls
41
41 VS/VV Retrofit Opportunities Converting CS/CV to VS/VV Steam systems 3 pipe hot/chilled water systems One pipe hot water systems 3-way valve hot water systems Uncontrolled radiant systems Over-sized boiler pumps
42
42 VS/VV Retrofit Opportunities Converting CS/VV to VS/VV CS 2-way valve HW systems CS three pipe systems Systems with poor ΔT control Systems with over-sized pumps Systems with local ΔP sensors Systems with single VS pumps
43
43 Demand More Magna3: Features & Benefits
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.