Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neutrino Telescopes and Neutrinos from LHC Neutrino Telescopes and Neutrinos from LHC ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi,

Similar presentations


Presentation on theme: "Neutrino Telescopes and Neutrinos from LHC Neutrino Telescopes and Neutrinos from LHC ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi,"— Presentation transcript:

1 Neutrino Telescopes and Neutrinos from LHC Neutrino Telescopes and Neutrinos from LHC ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi, Georgia Rezo Shanidze University of Erlangen-Nuremberg & IHEPI, Tbilisi State University

2 Neutrino Telescope Neutrino Telescope Detector for registration of high energy extra-terrestial neutrinos. High energy extra-terrestial radiation (cosmic rays, gamma radiation, neutrinos) – detected with the help of methods developed in particle physics. High Energy Astrophysics / Astroparticle Physics / Particle Astrophysics: understanding the nature of cosmic high energy phenomena. Energy of the highest energy CR: E CR > 10 20 ev (10 8 TeV ~ x 10 7 LHC beam)

3 21.11.2005 Rezo shanidze 3 Astroparticle Physics PAO ANTARES H.E.S.S

4 The High Energy Cosmic Radiation Cosmic accelerators - Where and how Cosmic Particles get energy >10 19 eV? Most energetic astrophysical Objects: AGN, GRB, SN,…? Bottom-up models: Top-down models: Decays of heavy particles, …?  CMB

5 21.11.2005 Rezo shanidze 5 Cosmic Rays Cosmic Rays CR spectra CR spectra (E max ~3x10 20 eV): (E max ~3x10 20 eV): N 0 E - sm -2 s -1 sr -1 N 0 E - sm -2 s -1 sr -1 =2.7 (3.1) =2.7 (3.1) CR abundance CR abundance (at 10 GeV): (at 10 GeV): p(0,95),(0.046),…, p(0,95),(0.046),…, Si,…,Fe, … Si,…,Fe, … UHECR

6 21.11.2005 Rezo shanidze 6 UHECR: EAS/Fluorescence E i (x i,t i )  E(m 0,,) MC codes: HEMAS,CORSIKA,… GZK cut-off ? GZK cut-off Greisen- Zatsepin- Kuzmin EAS Fluorescence (AGASA/HiRes) E p > 10 19 eV: p + CMB  N EiEi EiEi Extensive Air Showers

7 Cosmic Ray Sources ? AGASA UHECR: E> 4 x 10 19 eV (72 events) 4-10 x10 19 eV, E>10 20 eV (11 events) ApJ, 522(1999), 225 Galactic plane survey by H.E.S.S. VHE  ( > 200 GeV )    or e    e +  ? (Inverse Compton Scattering) UHECR and VHE  propagation is affected by CMB radiation. High Energy cosmic neutrinos do not Interact with CMB !

8 21.11.2005 Rezo shanidze 8 High Energy  -Astronomy High Energy  -Astronomy  CC intearctions: High energy  has a longe range (~ km) in water/ice and produce Cherenkov radiation. Sources of high energy cosmic        e  e Weak decays of hadrons   e   =2 : 1 : 0   e :  =1 : 1 : 1  + N  ()+X -interactions:  t ~  0 E 0.363  0 =7.84x10 36 cm 2 PDF W(Z) cos c = 1/n

9 21.11.2005 Rezo shanidze 9

10 21.11.2005 Rezo shanidze 10 Baukal NT First Telescope BAIKAL NT (36, 96, 192) 1.1 km depth Baikal Neutrino Telescope Started: 1993 Russia/Germany (INR, MSU, JINR, … /DESY Zeuthen) Fisrt event 4 km from shore 1070 m deep 1998-1999 Data

11 21.11.2005 Rezo shanidze 11 AMANDA Detector Antarctic Muon And Neutrino Detector Array Location: South Pole Collaboration of 19 Instititions from US/Europe/ Venezuela AMANDA B10 (97-99): 10 strings, 302 OM AMANDA II (2000): 19 strings 677 OM (http://amanda.uci.edu)

12 21.11.2005 Rezo shanidze 12 ANTARES -Telescope 2005-2007: deployment of the full detector 12 lines 25 storeys/line 3 PMT/storey 900 PMT for high energies:   < 0.3 o (Quality of water!) 14.5m 0.1 km 2

13 21.11.2005 Rezo shanidze 13 High Energy Neutrino Flux Atmospheric neutrino flux Source: CR interactions CR flux:  N (E)~1.8E - N/(cm 2 s sr GeV) 2.7 (RPP, 2004) Systematic uncertainty: CR flux normalization, …

14 21.11.2005 Rezo shanidze 14

15 21.11.2005 Rezo shanidze 15 The Sky View for High Energy NT AMANDA ANTARES ANTARES - 2/3 of time: Galactic Centre

16 21.11.2005 Rezo shanidze 16 High Energy Neutrino Telescopes High Energy Neutrino Telescopes AMANDA/IceCube Baikal NESTOR ANTARES NEMO

17 21.11.2005 Rezo shanidze 17 km 3 scale  : IceCube @South Pole Collaboration: 9 countries, 26 Institutions. 80 str./ 4800 OM(2010+) Instrumented volume: 1 km 3 ~80.000 atm./y http://icecube.wisc.edu

18 The KM3NeT Project KM3NeT project is EU-funded Design Study for km 3 NT in the Mediterranenan Sea Consortium: 8 EU countries / 35 Institutions Coordinated by Erlangen University Time Schedule: 02/2006: Start of Design Study mid-2007: Conceptual Design Report End-2008: Technical Design Report 2009-13: Constraction From 2010: Data Taking

19 Neutrinos from LHC Neutrinos from LHC 

20 High Energy Accelerator Neutrinos Accelerator neutrinos with well defined energy spectra : Accelerator neutrinos with well defined energy spectra : significantly improve Neutrino Telescope - significantly improve Neutrino Telescope performance performance - important role in neutrino physics. - important role in neutrino physics. VLVnT - sensitive to high energy neutrinos VLVnT - sensitive to high energy neutrinos (above ~ 50-100 GeV ) (above ~ 50-100 GeV ) Currently several experiments performed/ planned with high energy accelerator neutrinos: Currently several experiments performed/ planned with high energy accelerator neutrinos: K2K, NuMI/MINOS, CNGS, T2K K2K, NuMI/MINOS, CNGS, T2K Long-baseline neutrino experiments. Long-baseline neutrino experiments.

21 21.11.2005 Rezo shanidze 21 KM3NeT Design Study MC simulations in Erlangen: Testing different concepts and options for photodetectors/Optical Modules and design geometry. MC simulations in Erlangen: Testing different concepts and options for photodetectors/Optical Modules and design geometry. 2nd Workshop on Very Large Volume neutrino Telescopes Catania, 8-11/2005

22 21.11.2005 Rezo shanidze 22 Long-baseline Beams Exp.Acc. E p (GeV) L (km) E (GeV) POT 10 19 ND(Kt)/Events K2KKEK12 250 1.5~2 50 / 150 NuMI/MINOSFNAL 120730 15.0 25 5 / ~10000 CERN-LNGSSPS 400732 30.2~4-8 ~2000 /kt Neutrino telescopes: 10 3 -10 6 ND ANTARES - ~ 10 Mtone KM3NeT ~ 1Gtone (10 9 m 3 ) E(LHC) > 17.5 E (SPS)

23 21.11.2005 Rezo shanidze 23 High Energy Accelerator Neutrinos Accelerator neutrinos: beam-target interactions Accelerator neutrinos: beam-target interactions Accelerator beams: ~ 10 12 -10 14 p/cm 2 s Accelerator beams: ~ 10 12 -10 14 p/cm 2 s Neutrino flux: N   (pA  X)/ tot (pA) Neutrino flux: N   (pA  X)/ tot (pA) Flux in Detector: with R 2, (E )=N ()/R 2 Flux in Detector: with R 2, (E )=N ()/R 2 tan=R/L, L-distance, R-detector radius tan=R/L, L-distance, R-detector radius Long-baseline neutrino experiments: Long-baseline neutrino experiments: K2K, NuMI/MINOS, CNGS K2K, NuMI/MINOS, CNGS

24 21.11.2005 Rezo shanidze 24 NuMI/MINOS Experiment NuMI/MINOS Experiment R.Plankett (FNAL), 23/02/2005 Talk @ XI International Workshop on Neutrino Telescopes        c   E   m   c .8m 2.5 10 13 p/pulse (1.9s) n  CC Events in MINOS 5kt detector (2.5 x10 20 POT/y) Low ~ 1600/yr Medium ~ 4300/yr High ~ 9250/yr

25 21.11.2005 Rezo shanidze 25 NT projects for MediterraneanExperimentLat.(N)/Long(E)Deep(m) L(km) L(km) Acc.(mrad) Acc.(mrad) ANTARES 42 o 50´/ 6 o 10´ ~2500 ~400 0.45 NEMO 36 o 38´/21 o 35´ ~4000~1400 0.40 NESTOR 36 o / 16 o ~3400~1700 0.11 ANTARES NESTOR NEMO KM3NeT

26 21.11.2005 Rezo shanidze 26 Large Hadron Collider LHC@CERN - from 2007 Beam energy: - 7000 GeV Protons per beam: 4 x10 14 Beam lifetime 14.9 h Protons/year = 200 d x(24/14.9)x410 14 =1.3x10 17 How LHC beams are used: 1) High Luminosity pp interaction: ATLAS, CMS exprerimets (~10%) 2) Low Luminosity pp interaction: ALICE, LHC-b 3) Unused (dumped) ( ~ 80%)

27 Neutrinos from High Energy proton-proton Interactions Neutrino sources: - Weak decays of hadrons: - Weak decays of hadrons: unflavored: neutrons,  unflavored: neutrons,  Flavored : strange, charm, Flavored : strange, charm, bottom bottom -Decays of leptons () and weak bosons (W, Z) bosons (W, Z)

28 Charged Pions and Flavored Particles Charged Pions and Flavored Particles Charged pions:   (139.5 MeV) Charged pions:   (139.5 MeV) BR (   ) = 100 %, l=cc=7.8 m BR (   ) = 100 %, l=cc=7.8 m Strange Particles: K  (493.7 MeV), K L (497.6) Strange Particles: K  (493.7 MeV), K L (497.6) BR(K    ) = 63.34 %, c= 3.7 m BR(K    ) = 63.34 %, c= 3.7 m BR(K L  e ) = 38.81 %, c=15.8 m BR(K L  e ) = 38.81 %, c=15.8 m BR(K L   ) = 27.12 % BR(K L   ) = 27.12 % Charmed mesons: D o (1.865 GeV ), D  (1.869 ), D s (1.968) BR(D o  eX)=6.9 % c=123 m BR(D o  X)=6.5 BR(D ±  eX)=17.2 % c=312 m

29 The LHC Interaction Points Beam dumping Arrea pA,14.9 h (  t: 86  s), E cm =114 GeV pp – 25 ns, ~ 10 9 pp/s, E cm =14 TeV

30 Neutrinos from High Luminosity IR  pp interactions @ 14 TeV: PYTHIA 6.2 (minimal bias interactions) PYTHIA 6.2 (minimal bias interactions)   pp =100 mb, ~ 50 / pp E ~ 360 GeV 1 mrad angle: beam pipe: R=25 10 -3 m, L=23 m, beam pipe: R=25 10 -3 m, L=23 m, ~ 1/pp, E  ~ 900 GeV ~ 1/pp, E  ~ 900 GeV Decay probability: Decay probability: w()=1-exp(-L/l  ) ~ L/l ,   =E  /m  w()=1-exp(-L/l  ) ~ L/l ,   =E  /m  w(E  =100 GeV) ~ 4 10 -3 w(E  =100 GeV) ~ 4 10 -3 ~ 10 6 ~ 10 6  sec (X 2 p beams X 2 IR)

31 Charm Production at LHC P N Q Q pp  2H C + X  + X Charm production at high energies: -Diffractive production (soft process) - gluon-gluon, quark-antiquark sub-process (QCD) Caclucable in QCD: Implemented in MC (PYTHIA) P

32 Neutrinos from High Luminosity IR Neutrinos from High Luminosity IR Neutrinos from different sources: a) from  decays b) from K decays c) from Charm  particles 

33 Neutrinos from Beam Dumpimg System High energy High energy neutrinos from charmed particles. neutrinos from charmed particles.  - absorbed, strange particles – multiple interctions before decay  - absorbed, strange particles – multiple interctions before decay pA interactions at 114 GeV

34 Event Rates in Neutrino Telescopes N = ∫ (E )  (E ) M(E ) N A (E ) dE N = ∫ (E )  (E ) M(E ) N A (E ) dE  (E ) neutrino flux  (E ) neutrino cross-section M(E )=V eff (E ) detector target mass N A Avogadro number (E ) neutrino detection efficiency N = ∫ (E ) A eff (E ) dE N = ∫ (E ) A eff (E ) dE

35 Effective Arrea for a Future Mediterranean NT NT: A eff (E,)= V eff (E,) (N A ) (E ) (E ) 

36 Neutrino Event Rates Neutrino Event Rates KM3NeT -neutrino CC event Rates in km 3 NT as a function of energy. L=1000 km a)pp neutrinos b) beam dump neutrinos

37 Summary and Outlook LHC proton beams will produce large flux of high energy neutrinos. A future VLVnT (KM3NeT) in Mediterranean Sea can detect large statistics of LHC neutrinos. Feasibility study for LHC/KM3NeT. neutrino experiment is necesary.


Download ppt "Neutrino Telescopes and Neutrinos from LHC Neutrino Telescopes and Neutrinos from LHC ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi,"

Similar presentations


Ads by Google