Download presentation

Presentation is loading. Please wait.

Published byJean Peters Modified over 6 years ago

1
3.2 Solving Systems of Equations Algebraically Substitution Method Elimination Method

2
Substitution Method Here you replace one variable with an expression. x + 4y = 26 x – 5y = - 10 Solve for a variable, x = 26 – 4y Replace “x” in the other equation (26 – 4y) – 5y = -10 Solve for y

3
(26 – 4y) – 5y = -10 26 – 4y – 5y = - 10Remove parentheses by multiplying by 1 26 – 9y = - 10Add like terms -9y = - 36Subtract 26 from both sides y = 4Divide by - 9

4
Solve for x x = 26 – 4y x = 26 – 4(4)Substitute for y x = 26 – 16 x = 10 The order pair is (10, 4). This is where the lines cross.

5
The Elimination Method Here we add the equations together when the coefficients are different signs. x + 2y = 10 x + y = 6 Here both lead coefficients are 1. We can change the coefficient to – 1, by multiplying by – 1.

6
x + 2y = 10 x + y = 6 Multiply the bottom equation by – 1. x + 2y = 10 - x - y = - 6When adding the y = 4equations together, x go to zero. Find x by replace it back in either equation. x + 2(4) = 10;x + 8 = 10;x = 2

7
So the order pair (2, 4) works in both equations. 2 + 2(4) = 10 2 + 4 = 6 We have two way to solve the systems, Substitution and Elimination; which way is better depends on the problem.

8
What about this problem 2x + 3y = 12 5x – 2y = 11 Here we have to multiply both equations If we wanted to remove the “x”, then we have to find the Least common multiple (L.C.M.) of 2 and 5. If we wanted to remove the “y”, then we have to find the least common multiple of 3 and -2.

9
Lets get rid of the “y” The L.C.M of 2 and 3 is 6. Since we want the coefficients to be opposite, - 2 will help in the equation. we multiply the top equation by 2. 2x + 3y = 12 4x + 6y = 24 The bottom equation by 3 5x – 2y = 1115x – 6y = 33

10
Add the new equations together 4x + 6y = 24 15x – 6y = 33 19x = 57 Divide by 19 x = 3 Replace in original equation and solve for y 2(3) + 3y = 126 + 3y = 123y = 6 y= 2

11
What about inconsistent systems? y – x = 5 Multiply the top equation by – 2, 2y – 2x = 8 2y – 2x = -10 then add the bottom.2y – 2x = 8 0 = - 2 This shows no solutions.

12
What if it is dependent (Many solutions) 1.6y = 0.4x + 1 0.4y = 0.1x + 0.25 Multiply the top and bottom equation by 100 to remove decimals. 160y = 40x + 100 40y = 10x + 25 Then multiply the bottom equation by -4 -160y = -40x – 100

13
Add the new equations together 160y = 40x + 100 -160y = -40x – 100 0 = 0 This is a system with many solutions.

14
Solve this system a – b = 2 -2a + 3b = 3

15
How about this system y = 3x – 4 y = 4 + x

16
Homework Page 120 # 13 – 35 odd

17
Homework Page 120 #14 – 34 even, 37

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google