Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Tully-Fisher Relation: Across Morphological Types and Redshift

Similar presentations


Presentation on theme: "The Tully-Fisher Relation: Across Morphological Types and Redshift"— Presentation transcript:

1 The Tully-Fisher Relation: Across Morphological Types and Redshift
Martin Bureau, Oxford University Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

2 The Tully-Fisher Relation: Across Morphological Types and Redshift
Martin Bureau, Oxford University Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

3 Hubble Sequence (spheroid) S Aa S Ab S Ac S Ad
Mass, velocity dispersion, L-weighted age, density S0 (Astronomy 01) Irr E1 E3 E7 Gas fraction, rotation, SF (disk) S Ba S Bb S Bc S Bd

4 Broad Aims Goals: Context: Mass assembly history
(gas, stars, dark matter) Chemical enrichment history (age, metallicity, SFH) Context: Hierarchical structure formation (merging, harassment, ...) Internal dynamical evolution (BH/triaxiality-driven, ...) ⇒ Exploit "fossil record" (near-field cosmology) (HST HDF) (SINS)

5 Scaling Relations (correlations)
Stellar Evolution: Colour - mag. diagram (CMD) UVX - Mg relation Galaxy Evolution: Fundamental plane (FP) Star Formation: Far infrared - radio correlation Kennicutt - Schmidt law (K-S) Underlying Physics: M/L - velocity dispersion Dark - visible matter (Micela et al. 88) (Blanton et al. 06) (Combes et al. 07)

6 Tully-Fisher: Definition
Originally, optical luminosity (magnitude) vs. HI linewidth (corrected for disk inclination) Generally, any luminosity (stellar mass) vs. any rotational velocity (total mass) ⇒ Luminous vs. dark matter Uses: Distance determination (H0, peculiar velocity field, …) ⇒ M/L evolution with z (and type) (zero-point and scatter) Lum. (Bureau et al. 96) V/sin i

7 Tully-Fisher: M/L evolution
Scaling: We have: G M / R2 = V2 / R M α V2 R We define: M/L Σ = M / πR2 We get: L = V4 / πG2 (M/L) Σ L α V4 (M/L)-1 Σ-1 M/L: Stellar populations - Age - Metallicity - Non-Solar abundance ratio - Star formation history (SFH) - Initial mass function (IMF) - … Dark matter Size scale (Gas-rich) disk galaxies

8 Tully-Fisher: Tracers
Spirals S0s Ellipticals Global HI line widths YES USUALLY NOT ALMOST NEVER Resolved ionised gas rotation curves SOMETIMES NO Resolved stellar rotation curves (corrected) Circular velocity of mass models

9 Stellar + CO T-F: Goals Goals: E - S0 - S continuity: M/L evolution
Constraints on galaxy formation through zero-point and scatter Probe E-S0-S interface (stellar pops, DM, structure) Constrain E-S0-S evolution Identical treatment of E/S0/S (avoid systematic biases) E - S0 - S continuity:

10 The Tully-Fisher Relation: Across Morphological Types and Redshift
Martin Bureau, Oxford University Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc, S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

11 Stellar T-F: Sample, data
28 edge-on disk galaxies: 14 S0, 14 Sa-Sc Mostly bright, HSB, field objects (Bureau & Freeman 1999) K-band images (Bureau et al. 06) Stellar kinematics (2-3 Re) (Chung et al. 04) ⇒ Inclination known, need to derive (corrected) rotation velocity Stellar kinematics: (V, σ, h3, h4) (Chung et al. 04) v σ h3 h4 vrms = √(v2 + σ2)

12 Stellar T-F: Modeling method
JAM: MDM Luminous MGE model: Multi-Gaussian expansion of image (incl. negative terms) ⇒ Radially constant M/L* free Dark NFW halo: Assumed mass- concentration relation ⇒ Dark halo virial mass MDM free JAM dynamical model: Jeans axisymmetric modeling ⇒ Radially constant orbital anisotropy βz free M/L* (Williams et al. 09) * Rotation dominant (esp. in outer parts), so anisotropy effects unimportant (mass-anisotropy degeneracy minimised)

13 Stellar T-F: Velocity measure
Velocities: Need single measure of velocity Flat (or asymptotic) velocity Systematics: Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases ⇒ Here, compare Vcirc with Vcirc Velocity definition: (Williams et al. 10) V (km s-1) R (arcsec)

14 Stellar T-F: Velocity measure
Velocities: Need single measure of velocity Flat (or asymptotic) velocity Systematics: Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases ⇒ Here, compare Vcirc with Vcirc Velocity comparisons: Vcirc - Vdrift S0 S S0 (Bedregal et al. 06) VHI - Vdrift (Williams et al. 10)

15 Stellar T-F: Velocity measure
VLA+ATCA: Velocities: Need single measure of velocity Flat (or asymptotic) velocity Systematics: Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases ⇒ Here, compare Vcirc with Vcirc (Chung et al. 06, 12)

16 Stellar T-F: S0 vs Sab S0 vs Sab: Evolution: T-F relation: K-band
Large offset to Sc-Sd T-F relation for both S0 and Sab S0 fainter than Sab by 0.50 ± 0.15 mag at K (identical treatment) (smaller than previous studies) Evolution: Fading timescale ≈1 Gyr, but S0 up to z≈1 ⇒ Passive evolution (exclusively) ruled out T-F relation: K-band (14 S Sa-Sc, mostly field spirals) (K-band; 2-3 Re stellar kinematics) S0 S (Williams et al. 10)

17 Baryonic T-F: S0 vs Sab Baryonic and “total” T-F:
S0 and Sab still slightly offset when considering stellar mass (0.2 dex) (worse if gas added) S0 – Sab offset unchanged for dynamical mass (although Mdyn rather uncertain) If S0 – Sab Mdyn offset is true, then “broken homology” (S0 more compact by 20%) ⇒ S0 not simply S fading… dynamical “processing” required T-F relation: M* and Mdyn M* S0 S Mdyn (Williams et al. 10)

18 Baryonic T-F: S0 vs Sab Baryonic and “total” T-F:
S0 and Sab still slightly offset when considering stellar mass (0.2 dex) (worse if gas added) S0 – Sab offset unchanged for dynamical mass (although Mdyn rather uncertain) If S0 – Sab Mdyn offset is true, then “broken homology” (S0 more compact by 20%) ⇒ S0 not simply S fading… dynamical “processing” required T-F relation: M* and Mdyn M α V2 R M α V4 (M/L)-1 Σ-1

19 The Tully-Fisher Relation: Across Morphological Types and Redshift
Martin Bureau, Oxford University Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

20 CO T-F Tracer Spirals S0s Ellipticals Global HI line widths YES
USUALLY NOT ALMOST NEVER Resolved ionised gas rotation curves SOMETIMES NO Resolved stellar rotation curves (corrected) Circular velocity of mass models

21 CO T-F Tracer Spirals S0s Ellipticals Global CO line widths YES
SOMETIMES Global HI line widths USUALLY NOT ALMOST NEVER Resolved ionised gas rotation curves NO Resolved stellar rotation curves (corrected) Circular velocity of mass models

22 CO T-F: Caveats and pitfalls
Possible Pitfalls: CO may not extend to flat part of rotation curve Geometry and inclination ill- defined CO-rich populations unrepresentative of general galaxy population (biased) (Young et al. 11) (Young et al. 11)

23 CO T-F: Atlas3D survey Atlas3D ⇒ 260 galaxies Sample selection:
MK < -21.5 D < 41 Mpc |δ – 29º| < 35º , |b| > 15º All E/S0s, no spiral structure Data: SAURON optical wide-field IFU SDSS/INT optical + 2MASS NIR imaging IRAM 30m CO (1-0)+(2-1) + CARMA CO (1-0) follow-up WSRT HI (δ > 10º, excl. Virgo) Various archives (XMM, Chandra, GALEX, HST, Spitzer, …) Atlas3D Red Blue g-r (Cappellari et al. 11) Mr ⇒ 260 galaxies

24 CO T-F: Single-dish survey
IRAM 30m Survey: CO(1-0,2-1), 23/12” FWHM 260 Atlas3D E/SOs Sensitivity: 3 mK (30 km s-1) 3 x 107 M⊙ Results: 22% detection rate MH2 = M⊙ CO(2-1)/CO(1-0) ≈ 1 - 2 Largely independent of: luminosity, dynamics (λR), environment (Virgo), … High S/N: Low S/N: (Combes, Young & Bureau 07; Young et al. 11)

25 CO T-F: Single-dish survey
IRAM 30m Survey: CO(1-0,2-1), 23/12” FWHM 260 Atlas3D E/SOs Sensitivity: 3 mK (30 km s-1) 3 x 107 M⊙ Results: 22% detection rate MH2 = M⊙ CO(2-1)/CO(1-0) ≈ 1 - 2 Largely independent of: luminosity, dynamics (λR), environment (Virgo), … Optical CMD + CO: (Young et al. 11, 13)

26 CO T-F: Inclination measures
Stellar: Galaxy axis ratio (intrinsic thickness; c/a=0.34) JAM best-fit inclination (Molecular) Gas: Unsharp-masked image ellipse fitting Tilted-ring model best-fit inclination ⇒ Error not strongly dependent on inclination Stellar i : (Davis et al. 11a) (Cappellari et al. 10)

27 CO T-F: Inclination measures
Atlas3D (CARMA): H2 and stars often misaligned: ≥1/3 external (accretion/cooling) ≤2/3 internal (stellar mass loss) Always aligned in clusters Randomly misaligned in field ⇒ Increased scatter (and bias) in field ? (Alatalo et al. 12) H2 - stars (Davis et al. 11b) Misalignment angle

28 CO T-F: Inclination measures
Stellar: Galaxy axis ratio (intrinsic thickness; c/a=0.34) JAM best-fit inclination (Molecular) Gas: Unsharp-masked image ellipse fitting Tilted-ring model best-fit inclination ⇒ Error not strongly dependent on inclination (Molecular) gas i : (Davis et al. 11a) (Cappellari et al. 10)

29 CO T-F: Velocity measure
Selection: Double-horn profiles likely to reach Vflat (imperfect diagnostic) CO traces Vflat globally (not Vpeak) CO traces the circular velocity locally ⇒ CO excellent kinematic tracer Integrated profiles : (Young et al. 11)

30 CO T-F: Velocity measure
CO vs. Ionised Gas: CO rotating faster (colder) then ionised gas (and stars) Nearly perfect tracer of the circular velocity Better (and excellent) tracer of dynamical mass  : BIMA CO (1-0) --- : SAURON JAM model + : SAURON stars + : SAURON ionised gas (Davis et al. 12)

31 CO T-F: Results CO Tully-Fisher: CO Tully-Fisher relations:
Many (potential) pitfalls Many better than expected Many simple workarounds Slope and zero-point robustly recovered Standard intrinsic scatter ⇒ Stellar / Jeans T-F easily recovered ⇒ No or minimum efforts ! ⇒ Great prospect to probe M/L(z) with LMT+ALMA… CO Tully-Fisher relations: (Davis et al. 11a)

32 CO T-F: Results ETG/FR vs Sc: CO Tully-Fisher relations:
Sc follow spirals in HI ETG/FR fainter than Sc by 1.0 ± 0.1 mag at K-band (identical treatment) Consistent with Williams et al.’s 0.5 mag at K-band offset for Sab (consistent with past work) ⇒ CO T-F easily recovered across all Hubble types (and environments) CO Tully-Fisher relations: (Chung et al., in prep)

33 CO T-F Tracer Spirals S0s Ellipticals Global CO line widths YES
SOMETIMES Global HI line widths USUALLY NOT ALMOST NEVER Resolved ionised gas rotation curves NO Resolved stellar rotation curves (corrected) Circular velocity of mass models

34 CO T-F Tracer Spirals S0s Ellipticals Global CO line widths YES
Global HI line widths USUALLY NOT ALMOST NEVER Resolved ionised gas rotation curves SOMETIMES NO Resolved stellar rotation curves (corrected) Circular velocity of mass models

35 The Tully-Fisher Relation: Across Morphological Types and Redshift
Martin Bureau, Oxford University Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

36 CO T-F: Local benchmark
Existing work: Number of studies and objects limited (Dickey, Lavezzi, Sofue, Tutui, …) Large single dishes or interferometry ⇒ Non-optimal datasets ⇒ Hard to compare with future high-z work CO Tully-Fisher relations: (Lavezzi & Dickey 1998) (Schoeniger & Sofue 1997) (Dickey & Kazes 1992)

37 CO T-F: Local benchmark
NANTEN2: 4m mm/sub-mm dish, Atacama CO(1-0) + (2-1) receivers (1 GHz ≈ 2600 km s-1 bandwidth) (61 kHz ≈ 0.15 km s-1 resolution) Small consortium ⇒ Large beam, 170” at CO(1-0) (entire galaxies) ⇒ Extensive, flexible scheduling NANTEN2:

38 CO T-F: Local benchmark
Nearby galaxy survey: Pilot observations: - 30+ galaxies observed (≈40 min on-source; single pointing) - Mosaics straightforward (few attempted) Full survey: “full” galaxies (≈3 yrs) - Preferably no CO detection, (non-TF) accurate distance ⇒ z = 0 benchmark (star formation, gas-to-dust ratio, …) NANTEN2: (Yoshiike et al., in prep)

39 CO T-F: Local benchmark
Nearby galaxy survey: Pilot observations: - 30+ galaxies observed (≈40 min on-source; single pointing) - Mosaics straightforward (few attempted) Full survey: “full” galaxies (≈3 yrs) - Preferably no CO detection, (non-TF) accurate distance ⇒ z = 0 benchmark (star formation, gas-to-dust ratio, …) NANTEN2: (Yoshiike et al., in prep)

40 CO T-F: Intermediate z ALMA: ALMA: 50 x 12m dishes to 16 km
12 x 7m dishes compact array 4 x 12m dishes total power 10 bands, GHz (bands 3, 6, 7, 9: cycles 0+1) (bands 4, 8, 10: in progress) (bands 1, 2, 5: ???) ⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr (z = 1 in 1 hr?) LMT + GBT promising ALMA:

41 CO T-F: Intermediate z ALMA: ALMA: CO(1-0): Band 3: z = 0.0 – 0.4
⇒ Great T-F machine (spatially-resolved or not) ⇒ Need better understanding of CO(2-1) ALMA: Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5) (ESO) QSO at z = 4.4, CII 158 μm (unresolved) (ESO)

42 CO T-F: Intermediate z ALMA: CARMA: CO(1-0): Band 3: z = 0.0 – 0.4
⇒ Great T-F machine (spatially-resolved or not) ⇒ Need better understanding of CO(2-1) CARMA: (EGNoG survey: spirals at z = 0.3) (Bauermeister et al. 13)

43 Hα T-F: Local benchmark
Existing work: Large number of (long-)slit spectroscopic studies (Mathewson et al., Courteau, …) Few integral-field studies (IFU, Fabry-Perot, …) Environment independent, excellent “beam” ⇒ Datasets available ⇒ IFU groundwork incomplete (simulate higher z IFU work) Hα Tully-Fisher relations: (C. Flynn) (EGG, Cornell U.)

44 Hα T-F: Local benchmark
Existing work: Large number of (long-)slit spectroscopic studies (Mathewson et al., Courteau, …) Few integral-field studies (IFU, Fabry-Perot, …) Environment independent, excellent “beam” ⇒ Datasets available ⇒ IFU groundwork incomplete (simulate higher z IFU work) Hα velocity fields: (Chemin et al. 2005) (Epinet et al. 2009)

45 Hα T-F: Intermediate z KMOS: VLT KMOS: 2nd generation VLT instrument
24 deployable IFUs over 7.2’ FOV (2.8” x 2.8”, 14 x 14 spaxels) JHK bands, R ≈ 3500 UK: Durham, Oxford, UKATC Germany: MPE, Munich Obs, ESO 250 GTO nights, 120 for UK ⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …) (MPE)

46 Hα T-F: Intermediate z KMOS UK GTO: Mid-z galaxy survey:
Large z = survey (Oxford, Durham?, MPE?) Pilot: ≈20-30 objects per bin 3 redshifts (0.8, 1.5, 2.4) 2 morphological bins Total: ≈1000 galaxies ? CANDELS fields (+ different environments) ⇒ Adapt current (z = 0) tools ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts (Miller et al. 12) (Förster Schreiber et al. 2009)

47 Hα T-F: Intermediate z KMOS UK GTO: Mid-z galaxy survey:
Large z = survey (Oxford, Durham?, MPE?) Pilot: ≈20-30 objects per bin 3 redshifts (0.8, 1.5, 2.4) 2 morphological bins Total: ≈1000 galaxies ? CANDELS fields (+ different environments) ⇒ Adapt current (z = 0) tools ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts (Koekemoer et al. 2011) (Miller et al. 2011)

48 The Tully-Fisher Relation: Across Morphological Types and Redshift
Martin Bureau, Oxford University Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS: Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans: Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

49 T-F Conclusions HI: - Trivial locally for late-type galaxies
⇒ Only exceptionally in early-types, high-density environments ⇒ Impossible to mid-z until SKA Stars: - JAM successful; m2 good tracer of enclosed mass; Vcirc reliable ⇒ Possible for all morphological types, environments ⇒ Always time-consuming, impossible beyond local universe CO: - Limited work locally; needs to be expanded ⇒ Routine to intermediate z with ALMA + LMT Hα: - Extensive work locally; needs to be expanded to IFUs ⇒ Difficult in early-types, ok for all environments ⇒ Routine to intermediate z with 2nd generation 8m telescopes


Download ppt "The Tully-Fisher Relation: Across Morphological Types and Redshift"

Similar presentations


Ads by Google