Presentation is loading. Please wait.

Presentation is loading. Please wait.

An Introduction to Cancer. 1.Heart Diseases685,089 28.0 2.Cancer556,902 22.7 3.Cerebrovascular diseases157,689 6.4 4.Chronic lower respiratory diseases126,382.

Similar presentations

Presentation on theme: "An Introduction to Cancer. 1.Heart Diseases685,089 28.0 2.Cancer556,902 22.7 3.Cerebrovascular diseases157,689 6.4 4.Chronic lower respiratory diseases126,382."— Presentation transcript:

1 An Introduction to Cancer

2 1.Heart Diseases685,089 28.0 2.Cancer556,902 22.7 3.Cerebrovascular diseases157,689 6.4 4.Chronic lower respiratory diseases126,382 5.2 5.Accidents (Unintentional injuries)109,277 4.5 6.Diabetes mellitus 74,219 3.0 7.Influenza and pneumonia 65,163 2.7 8.Alzheimer disease 63,457 2.6 1.Nephritis 42,453 1.7 10.Septicemia 34,069 1.4 RankCause of Death No. of deaths % of all deaths US Mortality, 2003

3 2006 Estimated US Cancer Cases* *Excludes basal and squamous cell skin cancers and in situ carcinomas except urinary bladder. Source: American Cancer Society, 2006. Men 720,280 Women 679,510 31%Breast 12%Lung & bronchus 11% Colon & rectum 6% Uterine corpus 4%Non-Hodgkin lymphoma 4% Melanoma of skin 3% Thyroid 3%Ovary 2% Urinary bladder 2% Pancreas 22%All Other Sites Prostate33% Lung & bronchus13% Colon & rectum10% Urinary bladder6% Melanoma of skin5% Non-Hodgkin 4% lymphoma Kidney3% Oral cavity3% Leukemia3% Pancreas2% All Other Sites18%

4 2006 Estimated US Cancer Deaths* ONS=Other nervous system. Source: American Cancer Society, 2006. Men 291,270 Women 273,560 26%Lung & bronchus 15%Breast 10%Colon & rectum 6%Pancreas 6%Ovary 4%Leukemia 3%Non-Hodgkin lymphoma 3%Uterine corpus 2%Multiple myeloma 2%Brain/ONS 23% All other sites Lung & bronchus31% Colon & rectum10% Prostate9% Pancreas6% Leukemia4% Liver & intrahepatic4% bile duct Esophagus4% Non-Hodgkin 3% lymphoma Urinary bladder3% Kidney3% All other sites 23%

5 What is cancer? Abnormal cell growth (neoplasia)‏ Malignant as opposed to benign –Benign: slow growth, non-invasive, no metastasis –Malignant: rapid growth, invasive, potential for metastasis

6 Phenotype of a cancer cell The Six Hallmarks of Cancer –Self-sufficient growth signals Constitutively activated growth factor signalling –Resistance to anti-growth signals Inactivated cell cycle checkpoint –Immortality Inactivated cell death pathway

7 Phenotype of a cancer cell (cont'd)‏ The Six Hallmarks of Cancer –Resistance to cell death Activated anti- cell death signalling –Sustained angiogenesis Activated VEGF signalling –Invasion and metastasis Loss of cell-to-cell interactions, etc.

8 Is cancer a heritable disease? There are heritable cancer syndromes The majority of cancers, however, are not familial Cancer is a genetic disease, but the majority of mutations that lead to cancer are somatic

9 What causes the mutations that lead to cancer? Viruses: HPV --> cervical cancer Bacteria: H. pylori --> gastric cancer Chemicals --> B[a]P --> lung cancer –a component of cigarette smoke benzo[a]pyrene (BaP) UV and ionizing radiation --> skin cancer What do these agents have in common?

10 Mutagens Viruses: insertional mutagenesis Chemicals: DNA adducts UV and ionizing radiation: single and double strand DNA breaks

11 What types of genes get mutated in cancer? Oncogenes are activated –Normal function: cell growth, gene transcription Tumor suppressor genes are inactivated –Normal function: DNA repair, cell cycle control, cell death

12 Smoking and Cancer About one-third of all cancer cases in the United States are directly attributable to cigarette smoking. –Smoke contains many mutagenic chemicals, and places them in direct contact with lung tissues. damages genes of epithelial cells lining the lungs

13 Tobacco Reduces Life Expectancy

14 Tumor suppressors “Guardian(s) of the genome” Often involved in maintaining genomic integrity (DNA repair, chromosome segregation)‏ Mutations in tumor suppressor genes lead to the “mutator phenotype”—mutation rates increase Often the 1 st mutation in a developing cancer

15 p53—a classic tumor suppressor “The guardian of the genome” Senses genomic damage Halts the cell cycle and initiates DNA repair If the DNA is irreparable, p53 will initiate the cell death process

16 Rb—a classic tumor suppressor Rb binds to a protein called E2F1 E2F1 initiates the G1/S cell cycle transition When bound to Rb, E2F1 can't function Thus, Rb is a crucial cell cycle checkpoint

17 Chromosomal Instability

18 Tumor-Suppressor Genes Tumor suppressor genes encode proteins that turn off cell division in healthy cells. –Cancer may be initiated by the inappropriate activation of proteins that regulate the cell cycle, or by the inactivation of proteins that normally suppress cell division.

19 Cancer and the Cell Cycle Cells control proliferation at several checkpoints. –All these controls must be inactivated for cancer to be initiated. Induction of most cancers involves mutations of several genes. –explains why most cancers occur in people over 40 »more time for individual cells to accumulate multiple mutations

20 The Cell Cycle and Cancer

21 Cancer Cancer is a growth disorder of cells. –uncontrolled and invasive growth results in tumor –may metastasize –can be caused by mutagenic chemicals or possibly viruses cell division never stops in a cancerous line, and are thus essentially immortal

22 Causes of Cancer Sarcomas - arise in connective tissue or muscle Carcinomas - arise in epithelial tissue –Carcinogens are agents thought to cause cancer. Ames test –Carcinogenic chemicals are all mutagenic.

23 The Stages of the Cell Cycle 1. Click on picture for cell cycle animation – will go to 2. Use alt-tab keys to go between website and power point presentation. 3. Click on blank space to proceed to next slide.)

24 Cancer and the Cell Cycle Oncogenes - genes that when introduced into normal cells cause them to become cancerous –Originally discovered by transfection - nuclear DNA from tumor cells is isolated and cleaved into random fragments, and tested for ability to induce cancer

25 Cancer and the Cell Cycle Proto-oncogenes are genes encoding proteins that stimulate cell division. –Mutated proto-oncogenes become cancer-causing genes (oncogenes). Mutated alleles of many oncogenes are genetically dominant.

26 There are several factors that regulate the cell cycle and assure a cell divides correctly. 1.Before a cell divides, the DNA is checked to make sure it has replicated correctly. (If DNA does not copy itself correctly, a gene mutation occurs. DNA replication animation:click on DNA picture

27 2. Chemical Signals tell a cell when to start and stop dividing. (Target cells animation: click on go sign)

28 Neighboring cells communicate with dividing cells to regulate their growth also. (Normal contact inhibition animation: click on petri dish)

29 Cancer is a disease of the cell cycle. Some of the body’s cells divide uncontrollably and tumors form. Tumors in Liver Tumor in Colon

30 DNA mutations disrupt the cell cycle. Mutations may be caused by: 1. radiation 2. smoking 3. Pollutants 4. chemicals 5. viruses

31 While normal cells will stop dividing if there is a mutation in the DNA, cancer cells will continue to divide with mutation.

32 Due to DNA mutations, cancer cells ignore the chemical signals that start and stop the cell cycle. 2 animations of cancer cells dividing: click on picture

33 Due to DNA mutations, cancer cells cannot communicate with neighboring cells. Cells continue to grow and form tumors. (cancer cells dividing: click on picture.) Skin cancer

34 SUMMARY Normal Cell Division 1.DNA is replicated properly. 2. Chemical signals start and stop the cell cycle. 3. Cells communicate with each other so they don’t become overcrowded. Cancer Cells 1.Mutations occur in the DNA when it is replicated. 2. Chemical signals that start and stop the cell cycle are ignored. 3. Cells do not communicate with each other and tumors form.

35 What can cancer therapies target? Classic cancer therapies target rapidly dividing cells Target the DNA –Ionizing radiation –Chemotherapy Many side effects –Hair loss –Weakened immune system –Problems with GI tract

36 What can cancer therapies target? Cancer treatments include drugs that can stop cancer cells from dividing.

37 What can cancer therapies target? A person's immune system will not target tumor cells because they appear to be “self” Some new therapies focus on activating one's immune system against a cancer

38 What can cancer therapies target? Modern, targeted therapies attack specific proteins that are abnormally expressed in a tumor May block over-expressed growth factor receptors --> Herceptin Generally, there are few side effects since these therapies are specifically targeted to cancer cells

39 Curing Cancer Preventing start of cancer –receiving signal to divide mutations that increase number of receptors on cell surface amplify the division signal –relay switch passage of signal into the cell’s interior –relay switch stuck in “ON” position

40 Curing Cancer –amplifying the signal amplification of signal within cytoplasm –releasing the brake used to restrain cell division –checking readiness ensures DNA is undamaged and ready to divide –stepping on the gas restore telomerase inhibitor

41 Potential Cancer Therapy Targets

42 Curing Cancer Preventing the spread of cancer –tumor growth angiogenesis inhibitors –metastasis cells break off and migrate

Download ppt "An Introduction to Cancer. 1.Heart Diseases685,089 28.0 2.Cancer556,902 22.7 3.Cerebrovascular diseases157,689 6.4 4.Chronic lower respiratory diseases126,382."

Similar presentations

Ads by Google