Presentation is loading. Please wait.

Presentation is loading. Please wait.

Transcription. the Central Dogma DNA mRNA Protein transcription translation gene expression RPE65 gene RPE65 protein.

Similar presentations


Presentation on theme: "Transcription. the Central Dogma DNA mRNA Protein transcription translation gene expression RPE65 gene RPE65 protein."— Presentation transcript:

1 Transcription

2 the Central Dogma DNA mRNA Protein transcription translation gene expression RPE65 gene RPE65 protein

3 Transcription  Individual DNA regions (genes) copied to mRNA  One DNA strand is template  Single-stranded RNA produced template strand mRNA template strand

4 Transcription Overview Un beau jour, je suis allé au marché pour acheter du pain. Il faisait chaud. Alors, j’ai acheté aussi un limonade. Il faisait chaud.

5 mRNA DNA transcription CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG gene What do we call this strand? Transcription overview

6 mRNA DNA transcription CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG template strand What enzyme makes RNA? Transcription overview

7 mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG template strand What direction is mRNA made? Transcription overview

8 mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 3’3’ 5’5’ CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG template strand What direction is the template strand read? Transcription overview

9 mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 3’3’ 5’5’ CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG Which strand does the mRNA look like? 5’5’3’3’ Transcription overview

10 mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 3’3’ 5’5’ CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG How do we know where to start and stop? 5’5’3’3’ Transcription overview

11  RNA polymerase synthesizes RNA 5 ′→ 3′  Starts at promoter, ends at terminator promoterterminator +1+1 5 ′ UTR coding region start codon stop codon “upstream”“downstream” DNA transcription coding region start codon stop codon 3 ′ UTR 5′5′ 3′3′ mRNA translation NH 3 COOH protein How is the RNA actually made?

12 Prokaryotic transcription Promoter: -10 and -35 sequences DNA -35-10+1 mRNA 5′ TTGACAT AACTGTA 5′ TATAAT ATATTA 5’5’ 3’3’

13 Prokaryotic transcription Promoter: -10 and -35 sequences DNA -35-10+1 mRNA TTGACAT TATAAT 5’5’ 3’3’

14 Prokaryotic transcription Initiation:  RNAP sigma subunit (σ) binds -10 and -35 DNA -35-10+1 σ 5’5’ 3’3’

15 Prokaryotic transcription Initiation:  RNAP core (α 2 ββ’) binds sigma DNA -35-10+1 σ α 2 ββ’ “core” 5’5’ 3’3’

16 Prokaryotic transcription Initiation:  Promoter determines template strand and direction -35 5′5′5′5′ 3′3′3′3′ 3′3′3′3′ 5′5′5′5′-10 -35-10 template strand for gene 1 template strand for gene 2

17 Regulatory elements  Prokaryotes use operator sequences DNA -35-10+1 mRNA TTGACAT TATAAT 5’5’ 3’3’ Operators Protein Transcription factors

18 Prokaryotic transcription Initiation:  RNAP opens transcription bubble (helicase activity) DNA -35-10 σ +1 5’5’ 3’3’

19 Prokaryotic transcription Initiation:  RNAP begins mRNA synthesis at +1 DNA -35-10 σ +1 5’5’ 3’3’ mRNA

20 Prokaryotic transcription Initiation:  Sigma released DNA -35-10 σ +1 5’5’ 3’3’ mRNA

21 Elongation: Prokaryotic transcription DNA -35-10 5’5’ 3’3’

22 Elongation: Prokaryotic transcription DNA 5’5’ 3’3’ terminator

23 ReplicationTranscription  Synthesize DNA  Copy whole genome  Copy both strands  Need primer  5 ′ → 3 ′  Multiple enzymes How are replication and transcription similar? How are they different?  Synthesize RNA  Copy one gene  Copy one strand  No primer  5 ′ → 3 ′  Only RNA polymerase

24 Eukaryotic transcription  3 RNA polymerases:  RNA polymerase I – rRNA  RNA polymerase II – mRNA  RNA polymerase III – tRNA RNA polymerase II from yeast

25 Eukaryotic transcription  RNAP II recognizes:  TFIID bound to TATA box (TATAAA)  TFIIB bound to TFIID  Transcription factors bound to enhancer sequences +1+1 Enhancers Transcription factors Sp1 hERR  1 CAATGATATATA box TFIIBTFIID

26 Eukaryotic transcription  RNAP II recognizes:  TFIID bound to TATA box (TATAAA)  TFIIB bound to TFIID  Transcription factors bound to enhancer sequences +1+1

27  Different from Prokaryotes- No terminator!  RNA cleaved from transcription complex +1+1 AAUAAA Eukaryotic Transcription Termination

28 RNA processing in eukaryotes DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA

29  methylated guanine  “backward” 5 ′ to 5 ′ linkage  Not encoded in DNA  Capping enzyme  Recognition by ribosome 5′ cap 5′ AGACCUGACCAUACC

30 RNA processing in eukaryotes DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA

31 3′ poly(A) tail  Poly(A) polymerase  Add ~200 A’s  Not in template  Important for:  Export of mRNA  Initiation of Translation  Stability of mRNA …UGGCAGACCUGACCA 3′ …UGGCAGACCUGACCAAAAAAAAAAAAAAAAAAAA

32 RNA processing in eukaryotes DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA

33 Splicing  Most genes interrupted by introns  Introns removed after transcription  Exons spliced together 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing unbroken coding sequence final mRNA

34 Splicing  snRNPs recognize exon-intron boundaries  RNA + protein  Cut and rejoin mRNA

35 Splicing RPE65 mRNA in nucleus: 21,000 nt (14 exons) AAAAAAAAA splicing mature RPE65 mRNA in nucleus: 1,700 nt (8%)

36 Splicing  Alternative splicing: >1 protein from one gene  27,000 human genes, but >100,000 proteins

37 Splicing  Mutations affecting splicing can cause genetic disease: cystic fibrosisretinitis pigmentosa spinal muscular atrophyPrader-Willi syndrome Huntington diseasespinocerebellar ataxia myotonic dystrophyFragile-X syndrome  Or produce genetic susceptibility to disease: lupusbipolar disorder schizophreniamyocardial infarction type I diabetesasthma cardiac hypertrophymultiple sclerosis autoimmune diseaseselevated cholesterol


Download ppt "Transcription. the Central Dogma DNA mRNA Protein transcription translation gene expression RPE65 gene RPE65 protein."

Similar presentations


Ads by Google