Presentation is loading. Please wait.

Presentation is loading. Please wait.

Peptide conjugation and cyclisation chemistry

Similar presentations


Presentation on theme: "Peptide conjugation and cyclisation chemistry"— Presentation transcript:

1 Peptide conjugation and cyclisation chemistry
for synthetic antigen development Gábor Mező Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös University Budapest, Hungary 2005

2 Synthetic antigens Aim: synthetic vaccines – prevention of infections
Increasing of immunogenicity of small epitope peptides (size, conformation) Application of multi copy of the epitopes (B- and T-cell epitopes) Prevention of the fast degradation of epitope peptides Synthetic antigens Aim: synthetic vaccines – prevention of infections diagnostic tools – effective and selective demonstration of the presence of infections in organism. How can be realized the point of wievs? coupling of the epitope to carrier molecules (conjugation) preparation of cyclic derivatives of epitopes (cyclisation) synthesis of peptides containing epitope as repeat unit (oligomerisation, chemical ligation) Point of wievs:

3 Carrier molecules Natural compounds Synthetic products
BSA, KLH, ovalbumine, tetanus toxoid, dextrane Synthetic products biodegradable biocompatible, but non-degradable Polymers polylisine branched chain polypeptide polytuftsin N-vinyl-pirrolidone maleic acid copolymer stirene-maleic acid copolymer Molecules with defined structure lysine dendrimers sequential oligopeptides

4 Carrier molecules applied in conjugates of
epitope peptides derived from HSV gD-1 Oligotuftsin derivative (T20): H-[Thr-Lys-Pro-Lys-Gly]4-NH2 Sequential oligopeptide (SOC): Ac-[Lys-Aib-Gly]4-OH Lysine tree (MAP): H-Lys-Lys(H-Lys)-Arg-Arg-b-Ala-NH2 Carriers with well defined composition (four conjugation sites): Natural compound as carrier molecule (multiple conjugation sites) Keyhole limpet hemocyanine (KLH) Polymer carrier molecule (multiple conjugation sites): Branched chain polpeptide (XAK) L-Ser or L-Glu oligo-DL-Ala polylysine

5 Applied epitope regions of HSV-1 glycoprotein D
9LKMADPNRFRGKD21L22 9-21 of HSV-1 gD is the optimal epitope from the N-terminal (1-23) part 13D, 16R, 17F residues are essential for antibody recognition; 14PN15 b-turn like structure under appropriate conditions; 11M can be replaced by Nle resulting in easier synthesis; 22L prevents the succinimid formation during the synthesis of 9-21-amide derivative. Applied epitope regions of HSV-1 glycoprotein D 268LAPEDPEDSALLEDPVGTVA287 281DPVG284 minimal epitope available for antibody production as a part of conjugate; DP highly acid sensitive peptide bond. 272DPEDSALL279, 276SALLEDPVG284, 278LLEDPVGTVA287 were used for preparation of cyclic epitope peptides from this region.

6 Bond formation in conjugation reactions
Amide bond: needs COOH group (compound 1) and NH2 (compound 2); N- or C-terminal or side chain (Glu, Asp, Lys) functional groups; there are more functional (COOH, NH2)groups in the peptides; protected or semiprotected peptides for conjugation; removal of protecting groups may cause side reaction; in case of protein or polymer conjugates the side reactions can’t be well detected and the side product can’t be removed. Disulfide bridge: needs thiol (Cys) group on both compounds; symmetrical disulfie bridge is more stable than asymmetrical; unprotected peptide fragments can be used. Chemoselective ligations: eg. thioether bond, thiazolidine ring formation unprotected peptide fragments can be used. Bifunctional coupling agents: homo- and hetero bifunctional reagents

7 Conjugation with amide bond formation
NH2 poly[Lys(DL-Alam)]; AK H-SALLEDPVG-NH2 H-SALLQDPVG-NH2 H-SALLENPVG-NH2 H-SALLED-OH H-DPVG-NH2 NH CO BOP (23.8%) CMC (51.6%) BOP (40.4%) BOP (26.3%) CMC (35.0%) CMC: N-cyclohexyl-N’(2-morpholinoethyl)carbodiimide methyl p-toluene sulphonate BOP: benzotriazol-1-yl-oxy-tris-dimethylamino phosphonium hexafluorophosphate * Conjugation with amide bond formation Mező, G. et al. J. Peptide Science 8, 107 (2002)

8 Tandem synthesis of conjugate SOC4([Nle11]-9-22)
Boc/Bzl strategy on PAM (phenyl-acetamidomethyl) resin: Boc-(Lys-Aib-Gly)4-PAM Fmoc 1. 50% TFA/DCM 2. Ac2O/DIEA/DMF Ac-(Lys-Aib-Gly)4-PAM 1. 40% piperidine/DMF 2. Boc-Leu-OH/DIC/HOBt Boc-Leu- - Boc-LK(ClZ)NleAD(OBzl)PNR(Tos)FR(Tos)GK(ClZ)D(OBzl)L- 2. 5% DIEA/DCM 3. Boc-Aaa(X)-OH 13x HF-p-cresol (95:5, V/V), 1.5h, -8 -0oC Ac-(Lys-Aib-Gly)4-OH H-LKNleADPNRFRGKDL- Mező, G. … Tsikaris, V. et al. Bioconjugate Chem. 14, 1260 (2003)

9 Attachment of epitope peptide containing thiol group
to carrier molecules Bonds: disulfide bridge, thioether bond, thiazolidine ring Disulfide bridge: thiol group on the carrier is needed Cysteine or cystine in the protein (partially reduction in the second case is necessary) Incorporation of bifunctional reagents Attachment of Cys-derivative to the carrier Thioether bond: coupling of haloacyl group to the carrier R-SH + Cl-CH2-CO-NH-R’ R-S- CH2-CO-NH-R’ B: -HCl NH2-CH-CO-R’ HO-CH2 Thiazolidine ring: Ser in the carrier is converted to the glyoxyl moiety NaIO4 O CH-CO-R’ NH2-CH-CO-R HS-CH2 CH-CO-R’ CH2-S R-CO-CH-NH

10 Application of amino/thiol type heterobifunctional
compounds NH2 N -OCO-(CH2)2-S-S- O SPDP N-succinimidyl-3-(2-pyridyldithio)-propionate Carlson et al. Biochem. J. 173, 723 (1978) poly[Lys(DL-Alam)]; AK NH NH2 -OCO-(CH2)2-S-S SPDP NH NH2 N -OCO-(CH2)2-S-S- HS in buffer solution pH=

11 Disadvantage of heterobifunctional reagents:
decrease the number of amino groups involve the introduction of a hydrophobic spacer moiety (both decrease the water solubility of the conjugate compared to the parent macromolecule) the disulfide formation between the activated thiol of the carrier and the Cys containing peptide proceeds at neutral or slightly alkaline pH dimerisation of Cys containing epitope peptide unstable carrier-peptide bond prefered symmetrical disulfide bridges intra- and/or intermolecular cross-linkage of conjugate lost solubility Some of the bifunctional reagents have antigenic property

12 Npys: 3-nitro-2-pyridinesulphenyl
Application of Cys(Npys) derivatives N R-CO-CH-CH2-S-S- R’-HN Stable in acids, however decomposes in alkaline solution: It is only compatible with Boc/Bzl strategy in SPPS React with thiols (Cys) in slightly acidic solution (pH 5-6) -Cys(Npys)- Npys: 3-nitro-2-pyridinesulphenyl Matsueda et al. Chem. Lett. (1981) 737 Incorporation of Cys(Npys) to the epitope peptide or to the carrier: In case of proteins (BSA, KLH): protein is partially reduced and then react with Cys(Npys) containing peptide. In case of synthetic carriers: Cys(Npys) is attached to the carrier then react with Cys containing epitope peptide. Free Cys on the carrier may cause cross-linkage during the storage. Drijfhout et al. Int. J. Pept. Prot. Res. 32, 161 (1988) Mező et al. Bioconjugate Chem. 11, 484 (2000)

13 Synthesis of branched chain polypeptide-epitope
peptide conjugates N O-CO-CH-CH2-S-S- HN F CO O C H3C CH3 Boc-Cys(Npys)-OPfp NH2 1. Boc-Cys(Npys)-OPfp in DMF-water (9:1) 2. 95%TFA-5%water NH -OCO-CH-CH2-S-S- NO2 HS in buffer solution pH= 5.5 -OCO-CH-CH2 -S S

14 Advantage of the use of Cys(Npys):
No change in the number of amino groups (no significant influence on the solubility); Reaction with thiol group can be carried out in slightly acidic condition; less dimer formation of epitope peptide the formed disulfide bridge between the carrier and epitope peptide is more stable However, stability study is necessary under the conditions used for biological assays. In neutral solutions refolding of disulfide bridges may occur. Artificial disulfide bridges may not be chemically and/or biologically stable. NH2 OH NH3 COO AK CAK (100%) SAK CSAK (27%) EAK CEAK (54%) + -

15 Conjugation with thioeter bond formation
Advantages of thioether bond: application of non-protected peptide precursors (vs. amide bond formation) chemically and biologically stable bond between the carrier and epitope peptide (vs. disulfide bridge) non-immunogenic bond (vs. some bifunctional coupling agents) easy coupling (between ClAc and SH groups), good yield (usually better than in case of amide or disulfide bond formation) Conjugation with thioeter bond formation Disadvantages: coupling is carried out in slightly alkaline solution (pH ) Cys containing peptides can dimerize (especially Cys at N-terminal) very active BrAc derivatives can be used effectively only when no other nucleophilles are present except Cys unreacted haloacetyl group should be blocked with an excess of Cys

16 Oxidation of Cys containing epitope peptides
Time Peptide (dimer) 5 min nd* nd 36%+ 27% 2% 2% 31% 0% 1 h 22% 5% 86% 76% 3% 3% 90% 15% 2 h 43% 10% 93% 88% 4% 4% 98% 27% 4 h 68% 16% 100% 100% nd nd 100% 41% 6 h 90% 23% nd nd 10% 10% nd nd 8 h 100% 30% nd nd nd nd nd nd 24 h nd 62% nd nd 15% 13% nd 82% * no data; + percentage of dimer present in the reaction mixture according to area under the peak in HPLC chromatogram H-CLKNleADPNRFRGKDL-NH2 H-LKNleADPNRFRGKDLC-NH2 H-CFRHDSGY-NH2 H-CGGGGGFRHDSGY-NH2 5 H-FRHDSGYC-NH2 6 H-FRHDSGYGGGGGC-NH2 7 GlpHWSHDWK(H-C)PG-NH2 8 GlpHWSHDWK(Ac-C)PG-NH2 Oxidation of Cys containing epitope peptides 0.5mg/mL peptide concentration in 0.1 M Tris buffer; pH 8.2 (in a closed tube) Mező, G., Manea, M. et al. J. Peptide Science 10, 701 (2004)

17 Conjugation of [Nle]11-9-22 epitope peptide from
L-Ser oligo-DL-Ala polylysine NH-CO-CH2Cl NH-CO-CH2 S H-Cys-OH SAK:ClAcOPcp 1:1 1:0.8 1:0.6 1:0.5 1:0.4 1:0.3 Subst. Cl (%) Subst.pept.(%) nd nd Conjugation of [Nle] epitope peptide from HSV gD-1 to SAK carrier molecule H-9LKNleADPNRFRGKDL22C-NH2 Mező et al. Bioconjugate Chemistry 14, 1260 (2003)

18 Synthesis of HSV gD1 [Nle]11-9-22Cys-KLH
MBS N-(3-maleimido-benzoyloxy)- succinimide Kitagawa,T. et al. J. Biochem. 79, 233 (1976) NH2 KLH NH + H-9LKNleADPNRFRGKDL22C-NH2 H in PBS-DMF, 30 min, RT then Sephadex G25, 10mM PBS (pH 6) S Synthesis of HSV gD1 [Nle] Cys-KLH conjugate PBS solution is adjuted to pH 7.5

19 Conjugation of [Nle]11-9-22 epitope peptide from
HSV gD-1 to T20 carrier Boc-[Thr(Bzl)-Lys(ClZ)-Pro-Lys(Fmoc)-Gly]4-MBHA Fmoc cleavage (20% piperidine/DMF) Chloroacetylation (ClAc-OPcp/DMF) Boc-[Thr(Bzl)-Lys(ClZ)-Pro-Lys(ClAc)-Gly]4-MBHA Boc cleavage (33% TFA/DCM) Cleavage (HF-p-thiocresol-m-cresol) (10ml:0.5g:0.5ml) H-[Thr-Lys-Pro-Lys(ClCH2CO)-Gly]4-NH2 Conjugation H-9LKNleADPNRFRGKDL22C-NH2 (0.1M Tris buffer, pH 8.0, 72 h) H-[Thr-Lys-Pro-Lys(CH2CO)-Gly]4-NH2 S

20 Advantage of well-characterised carrier molecules:
conjugation can be followed by HPLC and/or MS the conjugate can be purified by HPLC the product can be characterised by MS and amino acid analysis the conjugate has a defined structure Conjugate epitope/conj [M+H] direct ELISA competition ELISA mol/mol calc/found ng/100mL pmol/100mL T20(9-22C) / SOC(9-22C) / MAP(9-22C) / n.i. SAK(9-22C) SAK(9-22C) SAK(9-22C) KLH(9-22C) /

21 Multiple cyclic antigene peptide
Fmoc Spetzler, J.C., Tam, J.P. Peptide Research 9, 290 (1996) Fmoc-Lys(Fmoc)-Lys(Fmoc-Lys(Fmoc))-Ser-Ser-b-Ala- R = MAP core Fmoc-Cys(StBu)- Antigen -Lys(Mtt)-Asp(OtBu)-Pro- Fmoc-Cys(StBu)- Antigen -Lys(Mtt)-Asp-(OtBu)Pro- Synthesis using Fmoc chemistry 1. 95%TFA-5%TIS 2. Fmoc-Ser(tBu)-OH DCC/HOBt in DMF Fmoc-Cys(StBu)- Antigen -Lys(Fmoc-Ser(tBu))-Asp(OtBu)-Pro-

22 then HPLC purification
Fmoc-Cys(StBu)- Antigen -Lys(Fmoc-Ser(tBu))-Asp(OtBu)-Pro- 1. 20% piperidine/DMF 2. TFA/TIS/thioanisole/water(92.5:2.5:2.5:2.5, V/V) NH2-Cys(StBu)- Antigen -Lys(NH2-Ser)-Asp-Pro- NaIO4 in 10mM PBS solution (pH 6.8) then HPLC purification OH NH2-Cys(StBu)- Antigen -Lys(O=CH-CO)-Asp-Pro- Tris-(2-carboxyethyl)phosphine 10mM Na-acetate buffer (pH 4.2), Rt, 48h OH Antigen -Lys-Asp-Pro- OH CO S NH Antigen = peptide derived from V3 loop of gp120 HIV

23 Preparation of cyclic epitope peptides derived from
Synthesis of cyclopeptides: amide bond (protected precursor peptide) disulfide bridge (stability of the bond may be not appropriate) thioether bond (stable bond formation from unprotected precursor) NH-DPEDSALL-CO NH2-CDPEDSALLC-CONH2 Number of atoms in the cycle 24 32 30 Preparation see next slide air oxidation, 12h 0.1M Tris-buffer (pH 8) 0.1 mg/mL peptide conc. 3-4h 1-2mg/ml final concentration Preparation of cyclic epitope peptides derived from sequence of HSV-1 glycoprotein D CO-NH-DPEDSALLC-CONH2 CH S S Jakab, A., Mező, G. et al. (submitted)

24 Synthesis of cyclic epitope peptide with amide bond formation
NH-DPEDSALL-CO NH-LLDPEDSA-CO = Boc-Leu-Leu-Asp(OcHex)-Pro-Glu(OcHex)-Asp(OcHex)-Ser(Bzl)-Ala-R 1. 33% TFA/DCM 2. 1M TMSOTf-thioanisole/TFA (m-cresol) 45 min, 0oC H-Leu-Leu-Asp(OcHex)-Pro-Glu(OcHex)-Asp(OcHex)-Ser-Ala-OH BOP-HOBt-DIEA (3:3:6 equiv) in DMF 2x12h, RT 0.5mg/mL peptide concentration Leu-Leu-Asp(OcHex)-Pro-Glu(OcHex)-Asp(OcHex)-Ser-Ala HF-p-cresol (10mL:1g) Leu-Leu-Asp-Pro-Glu-Asp-Ser-Ala R: Merrifield resin; D-Ala content < 1% Yield: 20% Synthesis of cyclic epitope peptide with amide bond formation

25 CD-spectra of H-DPEDSALL-NH2 linear peptide
in water-TFE mixtures CD-spectra of H-DPEDSALL-NH2, c(CH2-CO-DPEDSALLC)-NH2 and H-c(CDPEDSALLC)-NH2 in TFE Solution conformation of linear and cyclic epitope peptides derived from region of HSV gD-1 200 220 240 260 280 -80000 -60000 -40000 -20000 20000 40000 60000 80000 100000 water TFE25 TFE50 TFE75 TFE Q /deg cm 2 dmol -1 l /nm disulfide thioether linear / deg cm -30 -20 -10 10 20 CD spectra of H-LLDPEDSA-OH *10 -3 180 -150 -100 -50 50 100 CD spectra of c(DPEDSALL)

26 Enzyme digestion of 272-279 epitope and cyclic
(disulfide) derivative by Aminopeptidase M 10 20 30 40 -0,05 0,00 0,05 0,10 0,15 0,20 Cyclopeptide with disulfide bond - 0 h A 214 t /min 0,0 0,1 Cyclopeptide with disulfide bond - 24 h -0,04 0,04 0,08 0,12 0,16 Linear peptide - 0 h Linear peptide - 24 h

27 Binding of monoclonal antibody DL6 to linear
0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 1,95 3,9 7,8 15,6 31,3 62,5 125 250 500 1000 2000 n / pmol peptid e ( DL 6 : 1:125000 dilution) OD 495 Binding of monoclonal antibody DL6 to linear and cyclic epitope peptides of HSV gD-1 (Competition ELISA) H - DPEDSALL NH Target antigen: 0.5 mg 260- 284 peptide / well c(CH2CO-DPEDSALLC)-NH2 c(CDPEDSALLC)-NH2 H-LLDPRDSALL-OH 9-22-Acp-C

28 Enzymatic cleavage of linear and cyclic peptides
derived from region of HSV gD-1 100% 100% H-LLEDPVGTVA-NH2 80% 80% c(LLEDPVGTVA) 50% human serum % % 60% 60% Peptide Peptide 40% 40% H-c(CLLEDPVGTVAC)-NH2 20% 20% c(CH2CO-LLEDPVGTVAC)-NH2 0% 0% 24 24 48 48 72 72 96 96 Time ( Time ( hours hours ) ) 0% 20% 40% 60% 80% 100% 60 120 180 Time (min) Peptide (%) H-LLEDPVGTVA-NH2 c(LLEDPVGTVA) H-c(CLLEDPVGTVAC)-NH2 c(CH2CO-LLEDPVGTVAC)-NH2 lysosoma Tugyi, R., Mező, G., et al. J. Peptide Science (in press)

29 Synthesis of cyclic derivatives of 9-22 sequence from HSV gD-1
Boc-L-K-X-A-D-P-N-R-F-K-G-K-D-L-MBHA ClZ OcHex Tos Meb Fmoc 1. deFmoc (2%DBU,2%piperidine/DMF) 2. ClAcOPcp(5equiv)/DMF 3. deBoc (33%TFA/DCM) H-L-K-X-A-D-P-N-R-F-K-G-K-D-L-MBHA ClZ OcHex Tos Meb ClAc HF-m-cresol–p-thiocresol (10mL:0.5mL:0.5g) 90 min, 0oC purification RP-HPLC H-L-K-X-A-D-P-N-R-F-K-G-K-D-L-NH2 SH ClAc Cyclisation (adding peptide in small portion 0.1M Tris-buffer to the solution) (pH 8.1) Arg was replaced by Lys in position 18 X = Hcy (mimicking Met in the cycle) or Cys S CH2-CO H-9L-K-X-A-D-P-N-R-F-K-G-K-D-L22-NH2 Sclosser, G., Mező, G. et al. Biophys. Chem. 106, 155 (2003)

30 Mimicking of Met in cyclopeptides containing
thioether bond --NH-CH-CO NH-CH-CO-- CH2 S CH2 CO NH Hcy Lys CH3 NH2 Met Lys Hcy ClAc-Lys SH Cl-CH2-CO-NH - HCl

31 CD-spectra and amide I peaks in FT-IR spectrum
of cyclic epitope peptides n (cm - 1 ) [%] Peptide High freqency region Solvated amides b turns g H-LK[HcyADPNRFK]GKDL-NH2 1676 (15) 1661 (43) 1644 (10) 1629 (14) H-LK[CADPNRFK]GKDL-NH2 1674 (20) 1660 (44) 1643 (6) 1629 (18) water water-TFE (1:1) TFE

32 Mean average NMR stucture of cyclic epitope peptides
N-terminal C-terminal 16 Arg 13 Asp H 2 C S O N H-LK[HcyADPNRFK]GKDL-NH2, conformer „A” H-LK[HcyADPNRFK]GKDL-NH2, conformer „B” N- teminal H-LK[CADPNRFK]GKDL-NH2

33 New analogue with increased size of cycle; dimerization, conjugation
H-LK[HcyADPNRFK]GKDL-NH2 and H-LK[CADPNRFK]GKDL-NH2 have very low binding activity on A16 mAb. New analogues: CH2-CO-LKMADPNRFRGKDLAhxC-NH2 CH2-CO-AhxLKMADPNRFRGKDLAhxC-NH2 CH2-CO-LKMADPNRFRGKDLAhxCAhxGFLGC(Acm)-NH2 CH2-CO-LKMADPNRFRGKDLAhxK[Ac-C(Acm)GFLG]AhxC-NH2 CH2-CO-LKNleADPNRFRGKDLAhxK[Ac-C(Acm)GFLG]AhxC-NH2 Fmoc Boc/Fmoc* Boc/Fmoc

34 Boc-LK(ClZ)MAD(OcHex)PNR(Tos)FR(Tos)GK(ClZ)D(OcHex)LAhxK(Fmoc)AhxC(Meb)-MBHA
2%DBU + 2% pipridine in DMF, min Boc-LK(ClZ)MAD(OcHex)PNR(Tos)FR(Tos)GK(ClZ)D(OcHex)LAhxKAhxC(Meb)-MBHA 1. Fmoc synthesis; Fmoc-Aaa-OH/DIC/HOBt (3equiv) 2. Acetylation of the terminal; Ac2O/DIEA in DMF Ac-C(Acm)GFLG- 1. deBoc; 33% TFA/DCM, 2+20 min 2. ClAc2O/DIEA in DMF, 30 min ClAc-LK(ClZ)MAD(OcHex)PNR(Tos)FR(Tos)GK(ClZ)D(OcHex)LAhxKAhxC(Meb)-MBHA HF-p-cresol-DTT (10ml:1g:0.1g), 90min, 0oC ClAc-LKMADPNRFRGKDLAhxKAhxC-NH2 Cyclisation in 0.1M Tris buffer (pH 8.0), 3-4h, RT CH2CO-LKMADPNRFRGKDLAhxKAhxC-NH2

35 Reactivity of 9-22 epitope derivatives against
[CH2CO-LKMADPNRFRGKDLAhxC]-NH [CH2CO-AhxLKMADPNRFRGKDLAhxC]-NH [CH2CO-LKMADPNRFRGKDLAhxC]AhxGFLGC(Acm)-NH [CH2CO-LKMADPNRFRGKDLAhxK{Ac-C(Acm)GFLG}AhxC]-NH [CH2CO-LKNleADPNRFRGKDLAhxK{Ac-C(Acm)GFLG}AhxC]-NH H-LKMADPNRFRGKDL-NH H-LKNleADPNRFRGKDL-NH H-LKMADPNRFKGKDL-NH H-LKNleADPNRFKGKDL-NH H-LK[CADPNRFK(CH2CO)]GKDL-NH > H-LK[HcyADPNRFK(CH2CO)]GKDL-NH Direct Competition Reactivity of 9-22 epitope derivatives against A16 mAb Data are in pmol range

36 Synthesis of cyclic dimers and conjugates
CH2CO-LKMADPNRFRGKDLAhxKAhxC-NH2 Ac-C(Acm)GFLG- I2 or Tl(tfa)3 oxidation Ac-CGFLG- DTT Ag-triflate carrier Ac-[TKPKG]4-NH2 CH2CO Dimer of cyclic peptide Conjugate containing 4 cyclic epitope peptide Synthesis of cyclic dimers and conjugates containing cyclic epitope peptides O2

37 Synthesis of peptide chimeras
Peptide chimera: combination of peptide sequences from different peptides and/or proteins. The ”host” peptide serve the basic sequence of the chimeric peptide, and one of the possible antigen presenting sequence (loop or turn) is replaced by the ”guest” sequence. a-conotoxin GI (”host”) H-ECCNPACGRHYSC-NH2 epitope of HSV gD1 (”guest”) Asp-Pro-Val-Gly (DPVG) Core epitope of MUC1 (”guest”) Pro-Asp-Thr-Arg (PDTR) Succesfull synthesis if the conformation ”host” and (”guest”) sequence is similar. Mező, G. et al. J. Peptide Research 55, 7 (2000) Drakopoulou, E., Mező, G. et al. J. Peptide Science 6, 175 (2000)

38 Synthesis of HSV gD1 epitope peptide-conotoxin
chimera Fmoc-YCCNPACGDPVGC-Rink AM tBu Trt Acm OtBu 1. 20% piperidine/DMF 2. 95%TFA-5% EDT (V/V) H-YCCNPACGDPVGC-NH2 DTNB phosphate buffer (pH8.3), 1h, RT Tl(tfa)3/TFA/anisole DTNB (Ellman reagent) = 5,5’-dithio-bis(2-nitrobenzoic acid) DPVG specific antibody was produced: Immunogenicity: bicyclic > monocyclic> linear IgM antybody binding to chimera: linear > bicyclic > monocyclic

39 Synthesis of oligomers of epitope peptides
MUC-1: bulid up from tandem repeat unit of a 20-mer peptide; APDTRPAPGSTAPPAHGVTS, APDTR is the main epitope; Thr are highly glycosilated; in many human tumours of epithelia origin the produced mucin is overexpressed and underglycosilated; the free peptide chain is recognised as an antigen; effective detection of antibodies may help in early diagnosis. Epitope peptides may be used as diagnostic tool: Increasing the number of epitopes results in higher antibody recognition. Synthesis of oligomers from the repeat unit.

40 + Fmoc-Pro-Ala-His(Trt)-Gly-Val-Thr(tBu)-Ser(tBu)-Ala-Pro-Asp (OtBu)-
-Thr(tBu)-Arg(Pmc)-Pro-Ala-Pro-Gly-Ser(tBu)-Thr(tBu)-Ala-Pro-ClTrt 20% piperidine/DMF NH2-Pro-Ala-His(Trt)-Gly-Val-Thr(tBu)-Ser(tBu)-Ala-Pro-Asp (OtBu)- TFE-DCM (3:7) -Thr(tBu)-Arg(Pmc)-Pro-Ala-Pro-Gly-Ser(tBu)-Thr(tBu)-Ala-Pro-OH + Fmoc-[Pro-Ala-His(Trt)-Gly-Val-Thr(tBu)-Ser(tBu)-Ala-Pro-Asp (OtBu)- -Thr(tBu)-Arg(Pmc)-Pro-Ala-Pro-Gly-Ser(tBu)-Thr(tBu)-Ala-Pro]2-ClTrt H-[Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp- -Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro]5-OH TFA-water-phenol-EDT-thioanisole (82.5:5:2.5:5) Krambovitis, E. et al. J. Biol. Chem. 273, (1998) DIC/HOBt (3-fold excess) (3-fold excess)

41 MUC1 dimer synthesis by fragment condensation
Choc-VTSAPDTRPAPGSTAPPAHG-Merrifield Bzl Bom OcHex Mts Boc-VTSAPDTRPAPGSTAPPAHG-MBHA 1M TMSOTf-thioanisole/TFA Choc-VTSAPDTRPAPGSTAPPAHG-OH H-VTSAPDTRPAPGSTAPPAHG-NH2 1. EDC/HOBt in DMF 2. HF-p-cresol (95:5) H-VTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHG-NH2 MUC1 dimer synthesis by fragment condensation using semiprotected peptides

42 MUC1 dimer synthesis by chemical ligation
Boc-VTSAPDTRPAPGSTAPPAHGC-MBHA Bzl Bom OcHex Tos Meb ClAc-VTSAPDTRPAPGSTAPPAHG-MBHA 1. 33% TFA/DCM (2+20 min) 2. HF- p-cresol/DTT (10ml: 1g :0.1g) 90min, 0oC HF- p-cresol (10ml: 1g) ClAc-VTSAPDTRPAPGSTAPPAHG-NH2 H-VTSAPDTRPAPGSTAPPAHGC-NH2 Tris buffer (pH 8.2) 2h, RT CH2CO-VTSAPDTRPAPGSTAPPAHG-NH2 MUC1 dimer synthesis by chemical ligation

43 Competition ELISA using C595 mAb
H-VTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHG-NH2 CH2CO-VTSAPDTRPAPGSTAPPAHG-NH2 H-VTSAPDTRPAPGSTAPPAHGC-NH2 H-APDTRPAPG-NH2 H-APDTRPAPGC-NH2 H-VTSAPDTRPAPGSTAPPAHG-NH2 56.3 mmol/dm3 53.2 mmol/dm3 25.9 mmol/dm3 0.62 mmol/dm3 0.78 mmol/dm3 Competition ELISA using C595 mAb Conjugation method has no significant influence on binding capacity

44 Zoltán Bánóczi Szilvia Bősze Ágnes Hilbert Annamária Jakab Gitta Schlosser Zsolt Skribanek Regina Tugyi Katalin Uray Ferenc Hudecz (Budapest, Hungary) Sytske Welling Wester Matty Feilbrief (Groningen, Netherland) Marilena Manea Michael Przybylski (Konstanz, Germany) Eliander Oliveria Mari-Luz Valero David Andreu (Barcelona, Spain) Eugenia Drakopoulou Claudio Vita (Saclay, France) Vassilios Tsikaris (Ioannina, Greece)


Download ppt "Peptide conjugation and cyclisation chemistry"

Similar presentations


Ads by Google