Presentation is loading. Please wait.

Presentation is loading. Please wait.

Charmonium Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn.

Similar presentations


Presentation on theme: "Charmonium Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn."— Presentation transcript:

1 Charmonium Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn.

2 1) Basic physics 2) Theoretical spectrum versus known states 3) NEW: open-flavor strong widths 4) E1 transitions 5) X(3872) The numbers quoted in 2-4) will appear in T.Barnes, S.Godfrey and E.S.Swanson (in prep.) I will mainly quote cc potential model results, which provide a useful intuitive picture of charmonium. LGT (C.Morningstar) is not yet competitive for higher mass cc states but is of course the preferred technique and will eventually solve everything. Charmonium

3 e g Small qq separation Large qq separation

4 The QCD flux tube (LGT, G.Bali et al; hep-ph/010032 ) LGT simulation showing the QCD flux tube QQ R = 1.2 [fm] “funnel-shaped” V QQ (R) Coul. (OGE) linear conft. (str. tens. = 16 T)

5 Physically allowed hadron states (color singlets) qq q3q3 Conventional quark model mesons and baryons. q 2 q 2, q 4 q,… multiquarks g 2, g 3,… glueballs maybe 1 e.g. qqg, q 3 g,… hybrids maybe 1-3 e.g.s 100s of e.g.s ”exotica” : ca. 10 6 e.g.s of (q 3 ) n, maybe 1-3 others (q 3 ) n, (qq)(qq), (qq)(q 3 ),… nuclei / molecules (q 2 q 2 ),(q 4 q),… multiquark clusters controversial e.g.  _ Basis state mixing may be very important in some sectors.

6 cc mesons states and spectrum The nonrelativistic quark model treats conventional charmonia as cc bound states. Since each quark has spin-1/2, the total spin is S qq = ½ x ½ = 1 + 0 Combining this with orbital angular momentum L qq gives states of total J qq = L qq spin singlets J qq = L qq +1, L qq, L qq -1 spin triplets tot. xxxxx

7 Parity P qq = (-1) (L+1) C-parity C qq = (-1) (L+S) cc mesons quantum numbers 1S: 3 S 1 1   ; 1 S 0 0   2S: 2 3 S 1 1   ; 2 1 S 0 0   … 1P: 3 P 2 2  ; 3 P 1 1  ; 3 P 0 0  ; 1 P 1 1    2P … 1D: 3 D 3 3  ; 3 D 2 2  ; 3 D 1 1  ; 1 D 2 2    2D … J PC forbidden to qq are called “J PC -exotic quantum numbers”. 0   ; 0  ; 1  ; 2  ; 3  … Plausible J PC -exotic candidates = hybrids, glueballs (high mass), maybe multiquarks (fall-apart decays). The resulting cc NL states N 2S+1 L J have J PC =

8 Charmonium Theoretical spectrum versus known states

9 Charmonium (cc) A nice example of a QQ spectrum. Expt. states (blue) are shown with the usual L classification. Above 3.73 GeV: Open charm strong decays (DD, DD* …): broader states except 1D 2 2   2  3.73 GeV Below 3.73 GeV: Annihilation and EM decays. , KK*,  cc, , l  l ..): narrow states.

10 Fitting cc potential model parameters.  s, b, m c,  fixed from 1P c.o.g. and all 1S and 2S masses. blue = expt, red = theory.  s = 0.5111 b = 0.1577 [GeV 2 ] m c = 1.4439 [GeV]  = 1.1667 [GeV]

11 Predicted spin-dependent cc 1P multiplet splittings (sensitive test of OGE) Parameters  s, b, m c,  fixed from 1 3 P J c.o.g. and all 1S, 2S masses, prev slide. blue = expt, red = theory.  s = 0.5111 b = 0.1577 [GeV 2 ] m c = 1.4439 [GeV]  = 1.1667 [GeV] OGE + lin. scalar conft. 1 P 1 (not shown) is 8 MeV below the 3 P J c.o.g. Scalar conft. gives neg. L*S

12 2 3 S 1 (3672) 2 1 S 0 (3635) 3 3 S 1 (4073) 3 1 S 0 (4047) 4 3 S 1 (4407) 4 1 S 0 (4387) 3 3 P 2 (4320) 3 3 P 1 (4272) 3 3 P 0 (4202) 3 1 P 1 (4281) 2 3 P 2 (3976) 2 3 P 1 (3927) 2 3 P 0 (3853) 2 1 P 1 (3936) 3 P 2 (3560) 3 P 1 (3507) 3 P 0 (3424) 1 P 1 (3517) 2 3 D 3 (4170) 2 3 D 2 (4161) 2 3 D 1 (4144) 2 1 D 2 (4160) 3 D 3 (3810) 3 D 2 (3803) 3 D 1 (3787) 1 D 2 (3802) 2 3 F 4 (4351) 2 3 F 3 (4355) 2 3 F 2 (4353) 2 1 F 3 (4353) 3 F 4 (4025) 3 F 3 (4032) 3 F 2 (4032) 1 F 3 (4029) 3 S 1 (3087) 1 S 1 (2986) Fitted and predicted cc spectrum blue = expt, red = theory.  s = 0.5538 b = 0.1422 [GeV 2 ] m c = 1.4834 [GeV]  = 1.0222 [GeV] Previous fit (1S,2S,1P cog.):  s = 0.5111 b = 0.1577 [GeV 2 ] m c = 1.4439 [GeV]  = 1.1667 [GeV]

13 cc from the “standard” potential model S.Godfrey and N.Isgur, PRD32, 189 (1985).

14 Godfrey-Isgur model cc spectrum (SG, private comm.)

15 cc from LGT   exotic cc-H at 4.4 GeV oops…   cc has been withdrawn. Small L=2 hfs. What about LGT??? An e.g.: X.Liao and T.Manke, hep-lat/0210030 (quenched – no decay loops) Broadly consistent with the cc potential model spectrum. No radiative or strong decay predictions yet.

16 Charmonium Open-flavor strong decays

17 Experimental R summary (2003 PDG) Very interesting open experimental question: Do strong decays use the 3 P 0 model decay mechanism or the Cornell model decay mechanism or … ?  br  vector confinement??? controversial e  e , hence 1    cc states only. How do strong decays happen at the QCD (q-g) level? “Cornell” decay model: (1980s cc papers) (cc)  (cn)(nc) coupling from qq pair production by linear confining interaction. Absolute norm of  is fixed!

18 The 3 P 0 decay model: qq pair production with vacuum quantum numbers. L I = g  A standard for light hadron decays. It works for D/S in b 1 . The relation to QCD is obscure.

19 R and the 4 higher 1 -- states 3770 4040 4160 4415 (plot from Yi-Fang Wang’s online BES talk, 16 Sept 2002)

20 What are the total widths of cc states above 3.73 GeV? (These are dominated by open-flavor decays.) < 2.3 MeV 23.6(2.7) MeV 52(10) MeV 43(15) MeV 78(20) MeV PDG values

21 Strong Widths: 3 P 0 Decay Model 1D 3 D 3 0.6 [MeV] 3 D 2 - 3 D 1 43 [MeV] 1 D 2 - DD 23.6(2.7) [MeV] Parameters are  = 0.4 (from light meson decays), meson masses and wfns.

22 Strong Widths: 3 P 0 Decay Model 3 3 S 1 74 [MeV] 3 1 S 0 67 [MeV] 3S DD DD* D*D* D s 52(10) MeV

23  partial widths [MeV] ( 3 P 0 decay model): DD = 0.1 DD* = 32.9 D*D* = 33.4 [multiamp. mode] D s D s = 7.8 Theor R from the Cornell model. Eichten et al, PRD21, 203 (1980): 4040 DD DD* D*D* 4159 4415 famous nodal suppression of a 3 3 S 1  (4040) cc  DD  D*D* amplitudes ( 3 P 0 decay model): 1 P 1 =  0.056 5 P 1 =  0.251 5 F 1 = 0 std. cc and D meson SHO wfn. length scale

24 Strong Widths: 3 P 0 Decay Model 2D 2 3 D 3 148 [MeV] 2 3 D 2 93 [MeV] 2 3 D 1 74 [MeV] 2 1 D 2 112 [MeV] DD DD* D*D* D s D s D s * 78(20) [MeV]

25  partial widths [MeV] ( 3 P 0 decay model): DD = 16.3 DD* = 0.4 D*D* = 35.3 [multiamp. mode] D s D s = 8.0 D s D s * = 14.1 Theor R from the Cornell model. Eichten et al, PRD21, 203 (1980): 4040 DD DD* D*D* 4159 4415 std. cc SHO wfn. length scale  D*D* amplitudes: ( 3 P 0 decay model): 1 P 1 =  0.081 5 P 1 =  0.036 5 F 1 =  0.141

26 Strong Widths: 3 P 0 Decay Model 2P 2 3 P 2 83 [MeV] 2 3 P 1 162 [MeV] 2 3 P 0 29 [MeV] 2 1 P 1 86 [MeV] DD DD* D s

27 Strong Widths: 3 P 0 Decay Model 1F 3 F 4 9.0 [MeV] 3 F 3 87 [MeV] 3 F 2 165 [MeV] 1 F 3 64 [MeV] DD DD* D*D* D s

28 Charmonium Radiative transitions n.b. I will discuss only E1 because of time limitations. Yes, M1 is interesting too! J/    c and ’  ’ c give m c, and ’   c tests S*S corrections to orthog. 1S-2S wfns.

29 1P -> 1S 3 P 2  3 S 1 472 [keV] 3 P 1  3 S 1 353 [keV] 3 P 0  3 S 1 166 [keV] 1 P 1  1 S 0 581 [keV] 426(51) [keV] 288(48) [keV] 119(19) [keV] - E1 Radiative Partial Widths 2S -> 1P 2 3 S 1  3 P 2 39 [keV] 2 3 S 1  3 P 1 57 [keV] 2 3 S 1  3 P 0 67 [keV] 2 1 S 0  1 P 1 74 [keV] 18(2) [keV] 24(2) [keV] - Same model, wfns. and params as the cc spectrum. Standard | | 2 E1 decay rate formula. Expt. rad. decay rates from PDG 2002

30 E1 Radiative Partial Widths 1D -> 1P 3 D 3  3 P 2 305 [keV] 3 D 2  3 P 2 70 [keV] 3 P 1 342 [keV] 3 D 1  3 P 2 5 [keV] 3 P 1 134 [keV] 3 P 0 443 [keV] 1 D 2  1 P 1 376 [keV]

31

32 E1 Radiative Partial Widths 3S -> 2P 3 3 S 1  2 3 P 2 12 [keV] 3 3 S 1  2 3 P 1 38 [keV] 3 3 S 1  2 3 P 0 10 [keV] 3 1 S 0  2 1 P 1 114 [keV] 3S -> 1P 3 3 S 1  3 P 2 0.8 [keV] 3 3 S 1  3 P 1 0.6 [keV] 3 3 S 1  3 P 0 0.3 [keV] 3 1 S 0  1 P 1 11 [keV]

33 E1 Radiative Partial Widths 2D -> 1P 2 3 D 3  3 P 2 35 [keV] 2 3 D 2  3 P 2 8 [keV] 3 P 1 30 [keV] 2 3 D 1  3 P 2 1 [keV] 3 P 1 17 [keV] 3 P 0 32 [keV] 2 1 D 2  1 P 1 48 [keV] 2D -> 1F 2 3 D 3  3 F 4 67 [keV]  3 F 3 5 [keV]  3 F 2 15 [keV] 2 3 D 2  3 F 3 46 [keV] 3 F 2 6 [keV] 2 3 D 1  3 F 2 49 [keV] 2 1 D 2  1 F 3 54 [keV] 2D -> 2P 2 3 D 3  2 3 P 2 246 [keV] 2 3 D 2  2 3 P 2 54 [keV] 2 3 P 1 319[keV] 2 3 D 1  2 3 P 2 6 [keV] 2 3 P 1 173 [keV] 2 3 P 0 515 [keV] 2 1 D 2  2 1 P 1 355 [keV]

34 E1 Radiative Partial Widths 1F -> 1D 3 F 4  3 D 3 351 [keV] 3 F 3  3 D 3 43 [keV] 3 D 2 375 [keV] 3 F 2  3 D 3 2 [keV] 3 D 2 66 [keV] 3 D 1 524 [keV] 1 F 3  1 D 2 409 [keV]

35 X (3872 ) Belle Collab. S.-K.Choi et al, hep-ex/0309032; K.Abe et al, hep-ex/0308029.         J   D   D*   MeV Accidental agreement? X = cc 2  or 2  or …, or a molecular state?  MeV  = 3 D 1 cc. If the X(3872) is 1D cc, an L-multiplet is split much more than expected assuming scalar conft. n.b.  D   D*   MeV MeV

36 X (3872) from CDF G.Bauer, QWG presentation, 20 Sept. 2003. n.b. most recent CDF II: D.Acosta et al, hep-ex/0312021, 5 Dec 2003. M = 3871.3 pm 0.7 pm 0.4 MeV

37 cc from the “standard” potential model S.Godfrey and N.Isgur, PRD32, 189 (1985).     ( 3 D 2 is a typo)   The obvious guess if cc is 2  or 2 . No open-flavor strong decays – narrow.

38 Charmonium Options for the X(3872) T.Barnes and S.Godfrey, hep-ph/0311169. Our approach: Assume all conceivable cc assignments for the X(3872): all 8 states in the 1D and 2P cc multiplets. Nominal Godfrey-Isgur masses were 3 D 3 (3849) 2 3 P 2 (3979) 3 D 2 (3838) 2 3 P 1 (3953) 3 D 1 (3.82) [  (3770)] 2 3 P 0 (3916) 1 D 2 (3837) 2 1 P 1 (3956) We assigned a mass of 3872 MeV to each state and calculated the resulting strong and EM partial widths.

39 If X = 1D cc: Total width eliminates only 3 D 1. Large, ca. 300 – 500 keV E1 radiative partial widths to  J and  h c are predicted for 1D assignments ( 3 D 3, 3 D 2 ) and 1 D 2. If  tot = 1 MeV these are 30% - 50% b.f.s! The pattern of final P-wave cc states you populate identifies the initial cc state. If X = 1 D 2 cc, you are “forced” to discover the h c ! If X = 2P cc: 2 3 P 1 and 2 1 P 1 are possible based on total width alone. These assignments predict weaker but perhaps accessible radiative branches to J, ’ and  c  c ’ respectively. NOT to  J states. (E1 changes parity.) We cannot yet exclude 5 of the 8 1D and 2P cc assignments.

40 DD* molecule options This possibility is suggested by the similarity in mass, N.A.Tornqvist, PRL67, 556 (1991); hep-ph/0308277. F.E.Close and P.R.Page, hep-ph/0309253. C.Y.Wong, hep-ph/0311088. E.Braaten and M.Kusunoki, hep-ph/0311147. E.S.Swanson, hep-ph/0311229. n.b. The suggestion of charm meson molecules dates back to 1976:  (4040) as a D*D* molecule; (Voloshin and Okun; deRujula, Georgi and Glashow).  X MeV D  D*  MeV (I prefer this assignment.)

41 Interesting prediction of molecule decay modes: E.Swanson, hep-ph/0311299: 1  D o D* o molecule with additional comps. due to rescattering. J   J    Predicted total width ca. = expt limit (2 MeV). Very characteristic mix of isospins: J     and  J   decay modes expected. Nothing about the X(3872) is input: this all follows from O  E and C.I. !!!

42 X(3872) summary: The X(3872) is a new state reported by Belle and CDF in only one mode: J   . It is very narrow,  < 2.3 MeV. The limit on   is comparable to the observed J   . The mass suggests that X is a deuteronlike D o D* o -molecule. Naïvely, this suggests a narrow total X width of ca. 50 keV and 3:2 b.f.s to D o D o   and D o D o . However, internal rescatter to (cc)(nn) may be important. This predicts  (X) = 2 MeV and remarkable, comparable b.f.s to J   and J [ E.S.Swanson, hep-ph/0311299]. The bleedin’ obvious decay mode J    should be searched for, to test C(X) and establish whether     =    Possible “wrong-mass” cc assignments to 1D and 2P levels can be tested by their (often large) E1 radiative transitions to (cc).

43 Charmonium: Summary 1) The spectrum fits a OGE + linear scalar conft. potential model reasonably well. More cc states will be useful to test this. (Pt. 4.) 2) Some cc states above 3.73 GeV in addition to 2     and 2   are expected to be relatively narrow, notably 3 D 3 3 F 4 3 D 3 (  = 0.6 MeV ) and 3 F 4 (  = 9 MeV ). 3) The multiamplitude strong decays   D*D* can be used to establish the dom. strong decay mechanism. b.f.s to DD, DD*, D s D s … will be useful too. [ 3) is my favorite new-age cc topic.] 4) E1 rad:    2 tests S-wave comp. ,    DD search for new C=(+) cc states. 5) The X(3872) is likely a D o D* o molecule. J     and  J   decay modes? X = cc options predict large E1 b.f.s to   + P-wave cc.


Download ppt "Charmonium Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn."

Similar presentations


Ads by Google