Download presentation
Presentation is loading. Please wait.
Published byAbigail Gilbert Modified over 9 years ago
2
Chapter 4 Vocal Mechanism Perry C. Hanavan, AuD
3
Question The larynx is the: A.Voice box B.Throat C.Esophagus D.Nasal passage E.Oral cavity
4
Phonatory System
5
Larynx
6
The only bone of the larynx is: A.Thyroid B.Cricoid C.Arytenoid(s) D.Epiglottis E.Hyoid
7
Larynx
8
The vocalis muscle attaches to: A.Thyroid B.Cricoid C.Arytenoid(s) D.B and C E.A and C
9
The largest cartilage is the: A.Thyroid B.Cricoid C.Arytenoid(s) D.Mandible E.Hyoid
10
Larynx
11
To close or bring together: A.Abduct B.Adduct C.Neither
12
Vocal Folds
13
Muscles of Larynx Extrinsic –Have one point of attachment to larynx and other attachment other structure Intrinsic –Have origin and insertion within larynx
14
The vocalis is an ____ laryngeal muscle: A.Extrinsic B.Intrinsic C.Both D.Neither
15
Myoelastic-Aerodynamic Theory Model describing voice production (phonation) as a combination of: –Muscle force (myo) –Tissue elasticity (elasticity) –Pressures and flows (aerodynamic) –Bernoulli principleBernoulli principle
16
The Bernoulli principle: A.As velocity increases, pressure decreases B.As velocity decreases, pressure increases C.As velocity increases, pressure increases D.As velocity decreases, pressure decreases E.A and B are true F.C and D are true
17
Vocal Fold Phonation Determined by mass, length, and tension Changes throughout utterance (question vs. statement, etc.) Males F o (80-150) Females F o (180-250) Children F o (250-300)
18
Glottal Spectrum Glottal F o with harmonics Does not represent what is heard due to vocal tract modulation The F o corresponds to the perceived pitch of the voice The harmonics contribute to the quality of the voice
19
F o & Harmonic Spacing Adult Male Adult Female Child
20
Roll Off--F o
21
Who has the largest harmonic spaces (distance between harmonics)? A.Males B.Females C.Young girls D.Young boys E.C & D
22
F O & Hearing Loss Leder SB, Spitzer JB, Kirchner JC. Ann Otol Rhinol Laryngol. 1987 May-Jun;96(3 Pt 1):322-4. – Speaking fundamental frequency of postlingually profoundly deaf adult men. We investigated the speaking fundamental frequency (F0) of 21 postlingually profoundly sensorineurally deaf men. Results indicated that speaking F0 was significantly higher for the deaf group than for normal- hearing, age-matched men. Neither duration of profound deafness nor hearing aid usage affected speaking F0 values significantly.
23
Hearing vs. Hearing Loss J Acoust Soc Am. 1982 Jan;71(1):196-202. Long-term average speech spectra for normal and hearing-impaired adolescents. Monsen RB. Acoustical aspects of the speech of hearing-impaired were measured. The normal spectra are characterized by a regular pattern of peaks occurring at multiples of the talkers' fundamental frequencies and by slopes declining at rates of -5 to -6 dB/octave. After correction for lip-radiation impedance, these slopes are similar to that reported for the normal glottal source ( - 12 dB/octave). The hearing-impaired adolescents produced spectra for which the harmonic structure ranged from the very well defined to the irregular and poorly defined; spectral slopes declined at rates equal to or greater than the normal rate, in some cases declining at twice the normal rate.
24
Hearing vs. Cochlear Implant Int J Pediatr Otorhinolaryngol. 2002 Nov 11;66(2):115-23. Changes of voice and articulation in children with cochlear implants. Seifert E, Oswald M, Bruns U, Vischer M, Kompis M, Haeusler R. OBJECTIVE: The different speech sounds are formed by the primary voice signal and by the shape of the articulation tract. With this mechanism, specific overtones, the formants, are generated for each vowel. The objective of this study was to investigate the fundamental frequency (F 0 ) of the voice signal and the first three formants (F 1 -F 3 ) as a parameter of the articulation in prelingually deafened children at different timepoints after cochlear implantation (CI) compared with children with normal speech development. CONCLUSIONS: Our results indicate that prelingually deaf children who receive a cochlear implant before their fourth birthday attain better acoustic control over their speech, normalizing their fundamental frequencies and improving their articulatory skills.
25
Post CI & TC Ear Hear. 2003 Feb;24(1):48-70. Longitudinal changes in children's speech and voice physiology after cochlear implantation. Higgins MB, McCleary EA, Carney AE, Schulte L. OBJECTIVES: The purposes of this investigation were 1) to describe speech/voice physiological characteristics of prelingually deafened children before and after cochlear implantation and determine whether they fall into a range that would be considered deviant, 2) to determine whether selected deviant articulatory and phonatory behaviors of children with cochlear implants persist despite long-term cochlear implant use and continued participation in aural rehabilitation services, and 3) to determine whether further development of deviant articulatory and phonatory behaviors occurs postimplantation. CONCLUSIONS: Children who received cochlear implants after 5 yrs of age and who were educated in a Total Communication setting showed persistence and further development of deviant speech/voice behaviors for several years post-cochlear implant. Although our findings cannot be generalized to other populations of children with cochlear implants (i.e., those who were implanted earlier, those educated in auditory-oral programs), it seems wisest at the present time not to assume that children's deviant speech/voice behaviors will remit spontaneously with continued cochlear implant use.
26
Which is true? A.Speaking F0 was significantly higher for the late deafened group than for normal-hearing B.Children who received CIs and educated in a TC setting showed further development of speech/voice behaviors for several years post-CI. C.Prelingually deaf children who receive a CI before fourth birthday attain better acoustic control over their speech, normalizing their fundamental frequencies D.Adolescents with hearing loss produced spectra for which the harmonic structure ranged from the very well defined to the irregular and poorly defined; spectral slopes declined at rates equal to or greater than the normal rate E.All false F.All true
27
Voice Disorders jitter –cycle to cycle variability in frequency of vocal fold vibration also called frequency perturbation shimmer –cycle to cycle variability in amplitude of vocal fold vibration also called amplitude perturbation
28
Which is jitter? A.cycle to cycle variability in frequency of true vocal fold vibration also called frequency perturbation B.cycle to cycle variability in amplitude of vocal fold vibration also called amplitude perturbation C.cycle to cycle variability in frequency of false vocal fold vibration also called frequency perturbation D.cycle to cycle variability in amplitude of false vocal fold vibration also called amplitude perturbation
29
Noise series Jitter + noise series Jitter only series Shimmer + noise series Shimmer only series
30
Polyps Polyps videoPolyps
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.