Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ideal Gas Law PV = nRT Brings together gas properties. Can be derived from experiment and theory.

Similar presentations


Presentation on theme: "Ideal Gas Law PV = nRT Brings together gas properties. Can be derived from experiment and theory."— Presentation transcript:

1

2 Ideal Gas Law PV = nRT Brings together gas properties. Can be derived from experiment and theory.

3 Ideal Gas Equation P V = n R T Universal Gas Constant Volume No. of moles Temperature Pressure R = 0.0821 atm L / mol K R = 8.314 kPa L / mol K Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 366

4 PV = nRT P = pressure V = volume T = temperature (Kelvin) n = number of moles R = gas constant Standard Temperature and Pressure (STP) T = 0 o C or 273 K P = 1 atm = 101.3 kPa = 760 mm Hg Solve for constant (R) PV nT = R Substitute values: (1 atm) (22.4 L) (1 mole)(273 K) R = 0.0821 atm L / mol K or R = 8.31 kPa L / mol K R = 0.0821 atm L mol K Recall: 1 atm = 101.3 kPa (101.3 kPa) ( 1 atm) = 8.31 kPa L mol K 1 mol = 22.4 L @ STP

5 Ideal Gas Law What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine T = 300 o C P = 740 mm Hg R = 0.0821 atm. L / mol. K Step 2) Equation: V= nRT P V (500 g)(0.0821 atm. L / mol. K)(300 o C) 740 mm Hg = Step 3) Solve for variable Step 4) Substitute in numbers and solve V = What MISTAKES did we make in this problem? PV = nRT

6 What mistakes did we make in this problem? What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine  Convert mass to gram; recall iodine is diatomic (I 2 ) x mol I 2 = 500 g I 2 (1mol I 2 / 254 g I 2 ) n = 1.9685 mol I 2 T = 300 o C  Temperature must be converted to Kelvin T = 300 o C + 273 T = 573 K P = 740 mm Hg  Pressure needs to have same unit as R; therefore, convert pressure from mm Hg to atm. x atm = 740 mm Hg (1 atm / 760 mm Hg) P = 0.8 atm R = 0.0821 atm. L / mol. K

7 Ideal Gas Law What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine n = 1.9685 mol I 2 T = 573 K (300 o C) P = 0.9737 atm (740 mm Hg) R = 0.0821 atm. L / mol. K V = ? L Step 2) Equation: PV = nRT V= nRT P V (1.9685 mol)(0.0821 atm. L / mol. K)(573 K) 0.9737 atm = Step 3) Solve for variable Step 4) Substitute in numbers and solve V = 95.1 L I 2

8 Ideal Gas Law What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine T = 300 o C P = 740 mm Hg R = 0.0821 atm. L / mol. K Step 2) Equation: V= nRT P V (500 g)(0.0821 atm. L / mol. K)(300 o C) 740 mm Hg = Step 3) Solve for variable Step 4) Substitute in numbers and solve V = What MISTAKES did we make in this problem? PV = nRT

9 Ideal Gas Law Keys Ideal Gas Law http://www.unit5.org/chemistry/GasLaws.html


Download ppt "Ideal Gas Law PV = nRT Brings together gas properties. Can be derived from experiment and theory."

Similar presentations


Ads by Google