Presentation is loading. Please wait.

Presentation is loading. Please wait.

Similar Triangles/Polygons

Similar presentations

Presentation on theme: "Similar Triangles/Polygons"β€” Presentation transcript:

1 Similar Triangles/Polygons

2 Lesson Objective Lesson Success Criteria
To learn about similarity in triangles, and other polygons Lesson Success Criteria Can identify and solve problems involving similar triangles Can work successfully with ratios in solving geometric problems Can solve problems involving polygon similarity

3 Similar Triangles – what are they?
When two triangles are equiangular, then one triangle is an enlargement of the other – they are known as similar triangles. Their sides will be proportion, that is, the ratio of the lengths of the same sides is the same. π‘‹π‘Œ 𝐴𝐡 = π‘Œπ‘ 𝐡𝐢

4 Similar Triangles - examples
Here are some common examples of similar triangles. Note the parallel sides in the first two examples. Remember: Equiangular means equal angles.

5 Similar Triangles - calculation
Identifying similar triangles is a skill, as you are not normally told this. You may need to use geometric reasons to prove similarity first. Identify the two equiangular triangles, if possible, draw them as two separate triangles Identify which sides are in the same relative position Apply appropriate ratios to help calculate unknown sides Be careful: Some figures may overlap – identify carefully the lengths required

6 Similar Triangles – problem 1
All angles are equiangular, therefore we have similar triangles. We are asked to calculate side length x. π‘‚π‘’π‘Ÿ π‘Ÿπ‘Žπ‘‘π‘–π‘œ 𝑖𝑠 π‘‹π‘Œ 𝐴𝐡 = π‘Œπ‘ 𝐡𝐢 ∴ = π‘₯ ∴ π‘₯= 32Γ—8 20 =12.8π‘π‘š

7 Similar Triangles – problem 2
Calculate the height of the tree. This is done using the shadow length, and a known height of another object. π‘‚π‘’π‘Ÿ π‘Ÿπ‘Žπ‘‘π‘–π‘œ 𝑖𝑠 = β„Ž ∴ β„Ž= 84Γ—2 12 =14 π‘š

8 Similarity -polygons The same principles can be applied to any polygons that are similar: Corresponding angles are equal Corresponding sides are in proportion Following the same process as with triangles, you can through geometric reasoning solve for unknown sides. Remember: Corresponding means same position.


10 Practice From homework book Page 199 Ex F: Similarity


Download ppt "Similar Triangles/Polygons"

Similar presentations

Ads by Google