Download presentation
1
2IV60 Computer Graphics Basic Math for CG
Jack van Wijk TU/e
2
Overview Coordinates, points, vectors Matrices H&B A-1
3
nD Space nD Space: n (typically) n : number of dimensions Examples:
1D space: time, along a line or curve 2D space: plane, sphere 3D space: the world we live in 4D space: 3D + time H&B A-2
4
Coordinates 2D Cartesian coordinates: Standard Screen (output, input)
x y (x,y) (x,y) y x Standard Screen (output, input) H&B A-1
5
Polar coordinates y (x,y) r x H&B A-1
6
3D coordinates 1 3D Cartesian coordinates: Right-handed Left-handed
(x,y,z) z (x,y,z) z x y x y Right-handed Left-handed H&B A-1
7
3D coordinates 2 3D Cartesian coordinates: Right-handed Left-handed
(x,y,z) z (middle) z (middle) (x,y,z) y (index) x (thumb) x (thumb) y (index) Right-handed Left-handed H&B A-1
8
3D coordinates 3 Cylinder coordinates: (x,y,z) z y x H&B A-1
9
3D coordinates 4 Spherical coordinates: (x,y,z) z f r y x H&B A-1
10
Points Point: position in nD space
Notation: P (H&B), also P, p, p en p (x,y,z) (H&B), also (x1, x2, x3), (Px, Py, Pz), (r, , z), ( r, , ), … H&B A-2
11
Vectors 1 Vector: Notation: V (H&B), also V, v, v en v
“arrow” multiple interpretations (displacement, velocity, force, …) has a magnitude and direction has no position Notation: V (H&B), also V, v, v en v (Vx, Vy, Vz) (H&B), also (x, y, z), (x1, x2, x3) H&B A-2
12
Vectors 2 y P2 y2 P1 y1 V: directed line segment, or difference between two points x1 x2 x H&B A-2
13
Vectors 3 Length of a vector: H&B A-2
14
Vectors 4 Direction of a vector: Direction angles. Unit vector V :
Magnitude info is removed, direction is kept. z g b y x a H&B A-2
15
Vector addition Add components, put vector head to tail y y W V+W W V
x x H&B A-2
16
Scalar multiplication of vector
Multiplication components with scalar s y y 2V V x x H&B A-2
17
Combining vector operations
Infinite line through P with direction V: L(t) = P + Vt, t V y P t x t : parameter along line t [a, b]: line segment H&B A-2
18
Vector multiplication 1
Scalar product or dot product: Product of parallel components, gives 1 real value W V q |W| cos q |V| H&B A-2
19
Vector multiplication 2
Scalar product: H&B A-2
20
Vector multiplication 3
Vector product or cross product: gives a vector (in 3D) n perpendicular to V and W VW W q n V H&B A-2
21
Vector multiplication 5
Scalar product: H&B A-2
22
Vector multiplication 6
Scalar product: scalar Test if vectors are perpendicular cos project,… Vector product: vector Get a vector perpendicular to two given vectors sin surface area,… H&B A-2
23
Exercise 1 Given a point P.
Requested: Reflect a point Q with respect to P. Q W = P – Q Q’ = Q + 2W = 2P – Q or: = P + (P – Q ) W P x y Q’ We don’t need coordinates!
24
Exercise 1 Given a point P.
Requested: Reflect a point Q with respect to P. Q Alternative P is halfway Q and Q’: P = (Q + Q’)/2 2P = Q + Q’ Q’ = 2P – Q P Q’
25
Exercise 2 Given a line L: L(t) = P + Vt .
Requested: Reflect a point Q with respect to L. Q Q’ We know: Q’ = Q + 2 W W = L(t) – Q W. V = 0 W V L(t) y P t x
26
Exercise 2 We know: L(t) = P + Vt Q’ = Q + 2 W W = L(t) – Q W. V = 0
Substitute to get t: (L(t) – Q).V = 0 (P + Vt – Q).V = 0 V .V t + (P – Q).V = 0 t = ((Q – P).V) / (V .V) Then: Q’ = Q + 2 (P + Vt – Q) = 2P – Q + V((Q – P).V / V .V)
27
Steps to be made Write down what you know
Eliminate, substitute, etc. to get he result Check the result Does it make sense? Is there a simpler derivation?
28
Exercise 3 Given a triangle with vertices P, Q en R, where the angle PQR is perpendicular. Requested: Rotate the triangle around the line PQ over an angle a . What is the new position R’ of R? P R’ Q R
29
Circle in space |A|=1, |B|=1, A.B = 0
y C() C() P A B r P A B x |A|=1, |B|=1, A.B = 0 C() = (r cos , r sin , 0) = (0,0,0) + r cos (1,0,0) + r sin (0,1,0) = P + r cos A + r sin B
30
Exercise 3 A = (R – Q) / |R – Q|
B = (R – Q)(P – Q) / | (R – Q)(P – Q) | R’ = Q + |R – Q| cos A + |R – Q| sin B P B R’ Q A R
31
Use: Scalar product, cross product coordinate independent definitions
vector algebra Don’t use: arccos, arcsin y = f(x)
32
Very short intro to Linear Algebra
System of linear equations: Such systems occur in many, many applications. They are studied in Linear Algebra. H&B A-5
33
Very short intro to Linear Algebra
System of linear equations: Typical questions: Given u, v, w, what are x, y, z? Can we find a unique solution? H&B A-5
34
Very short intro to Linear Algebra
System of linear equations: Crucial in computer graphics: Transforming geometric objects Change of coordinates H&B A-5
35
Example transformation
y P: (x,y) x y’ P’ V U y x x’ H&B A-5
36
What is a matrix? Matrix: Mathematical objects with operations
Matrix in computer graphics: Defines a coordinate frame Defines a transformation Handy tool for manipulating transformations H&B A-5
37
Matrix Matrix: rectangular array of elements
Element: quantity (value, expression, function, …) Examples: H&B A-5
38
Matrix r c matrix: r rows, c columns
mij : element at row i and column j. H&B A-5
39
Matrix r c matrix: r rows, c columns
mij : element at row i and column j. r c elements H&B A-5
40
Matrix r c matrix: r rows, c columns
mij : element at row i and column j. c columns H&B A-5
41
Matrix r c matrix: r rows, c columns
mij : element at row i and column j. r rows H&B A-5
42
Matrix Column vector: matrix with c =1 Used for vectors (and points)
Row vector: matrix with r =1 Scalar: matrix with r=1and c=1 H&B A-5
43
Matrix Matrix as collection of column vectors:
W Matrix contains an axis-frame: H&B A-5
44
Operations on matrices
Multiplication with scalar simple Addition Matrix-matrix multiplication More difficult, but the most important H&B A-5
45
Scalar Matrix multiplication
Matrix M multiplied with scalar s: H&B A-5
46
Scalar Matrix addition
H&B A-5
47
Scalar Matrix addition
Just add elements pairwise A and B must have the same number of rows and columns Generalization of vector and scalar addition H&B A-5
48
Matrix Matrix multiplication
i = 2 ; k j = 1 ; k cij: dot product of row vector ai and column vector bj #columns A must be the same as #rows B: n = p C: m q matrix H&B A-5
49
Matrix Matrix multiplication
Example: i = 3 j = 2 i=3, j=2 H&B A-5
50
Matrix Matrix multiplication
Example: H&B A-5
51
Matrix Matrix multiplication
Example: H&B A-5
52
Matrix Matrix multiplication
Example: AB BA H&B A-5
53
Matrix Matrix multiplication
AB BA Matrix matrix multiplication is not commutative! Order matters! A(B+C) = AB+AC Matrix matrix multiplication is distributive H&B A-5
54
Example transformation sequence (coordinate version)
Unclear! Error-prone! H&B A-5
55
Example transformation sequence (matrix vector version)
H&B A-5
56
Example transformation sequence (compact matrix vector version)
Matrix vector notation allows for compactness and genericity! H&B A-5
57
Matrix Transpose Transpose matrix: Interchange rows and columns.
r c matrix M c r matrix MT H&B A-5
58
Matrix Inverse Simple algebra puzzle. Let ax = b. What is x?
Linear algebra puzzle. Let MU = V. What is U? H&B A-5
59
Matrix Inverse H&B A-5
60
Matrix Inverse examples
H&B A-5
61
Matrix Inverse examples
Does not exist, cannot be inverted. H&B A-5
62
Matrix Inverse Does not always exist
In general: if determinant = | M | = 0, matrix cannot be inverted Inverse for n = 1 and n = 2: easy Inverse for higher n: use library function Important special case: orthonormal matrix. H&B A-5
63
Overview Coordinates, points, vectors Matrices
definitions, operations, examples Matrices
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.