Download presentation
Presentation is loading. Please wait.
Published byAnnabella Blair Modified over 9 years ago
1
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP1 IGP Extensions for Automatic Computation of MPLS Traffic Engineering Path Using Traffic Engineering Layers and Areas draft-li-ccamp-auto-mbb-te-path-00 Zhenbin Li, Li Zhang, Yuanjiao Liu,Xudong Zhang Huawei Technologies IETF 88, Vancouver,BC, Canada
2
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP2 Application of MPLS TE in MBB E2E PWE3 2G TDM PW 3G ATM PW 3G ETH VRF LTE VRF S1 LTE VRF X2 E2E L3VPN Tunnel 2G TDM PW 3G ATM PW 3G ETH VRF LTE VRF S1 LTE VRF X2 TDM/ATM Services Ethernet Service MPLS TE is used in the network to carry L2VPN/L3VPN services, providing traffic engineering, OAM, etc. As the network scale expands, more MPLS TE tunnels have to be deployed. It is important to deploy MPLS TE tunnel easily. ATM RNC Last MileAccessAggregationRNC/SGW/MME RSG CSG BTS NodeB / eNB E1 Eth. IP RNC/S-GW/MME ATN PE NodeB ATM BSC STM-1 GE AGG P CSG ATN CSG ATN CSG
3
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP3 Problem Statement of MPLS TE Auto Path Computation Requirement 1: Completely disjointed primary and backup LSP Requirement 2: Avoid passing through different access rings AGG RSG AGG Aggregate Ring CSG Access Ring 1 Access Ring 4 Access Ring 2 Access Ring 3
4
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP4 Existing Solutions and Challenge Existing Solutions Solution 1: To set reasonable link cost Solution 2: To use explicit-path or affinity property(Color) Challenge It will be very complex and time-consuming to adjust the cost for a large scale network or change explicit path or affinity property for a great deal of MPLS TE tunnels.
5
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP5 Architecture of MPLS TE Auto Path Computation: Concept of TA/TL AGG RSG AGG Aggregate Ring 1 CSG Access Ring 1 Access Ring 2 Access Ring 3 TL2/TA0TA1TA2 TL2/TA0TA3 TL3/TA0 TL2/TA0TA1TA2TA3 TL1/TA1 TL1/TA3 TL1/TA1 TL1/TA2 TL3/TA0 Layer3 Layer2 Layer1 Concept of TA/TL TL (TE Layer): It indicates the physical layer of the node in the network. TA (TE Area): It indicates the physical ring of the node. TL and TA are defined for MPLS TE path computation according to the natural topology of the mobile network. IGP Flooding TA/TL Info TL and TA information are flooded and installed into TEDB.
6
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP6 Architecture of MPLS TE Auto Path Computation: Enhanced CSPF Algorithm AGG RSG AGG Aggregate Ring 1 CSG Access Ring 1 Access Ring 2 Access Ring 3 TL2/TA0TA1TA2 TL2/TA0TA3 TL3/TA0 TL2/TA0TA1TA2TA3 TL1/TA1 TL1/TA3 TL1/TA1 TL1/TA2 TL3/TA0 Layer3 Layer2 Layer1 Rules for Enhanced CSPF Algorithm Rule1: If the destination node of the LSP is not in the same TA as the source node or the passed node, the node in the different layer will be the potential next-hop. Rule2: One LSP's TL track can not include TLh->TLl- >TLh, this means that the LSP cannot pass through the low layer twice. Rule3: If the LSP reach a node that in the same TA as the destination node, the LSP must be calculated in this TA only. Rule 4: If the LSP reach a node that among more than one TAs, the node in different TA should be prior to be the next hop. Rules for Determining Primary/Secondary LSP Rule 5: The LSP which passes fewer TLs will be the primary LSP. Rule 6: If the two LSPs passes the same TLs, the one with shorter metric in every layer from high to low will be the main LSP
7
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP7 OSPF Extensions: TA TLV and TL TLV Elements of Procedure The OSPF TA and TL TLV is carried within the OSPF Routing Information LSA. The TA TLV and TL TLV may be advertised within an Area-local or Routing-domain scope Router Information LSA, depending on the MPLS TE profile. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Area number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Area number N | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Layer number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP8 ISIS Extensions: TA TLV and TL TLV 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Area number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Area number N | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TE-Layer number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Elements of Procedure The ISIS TA and TL TLV is carried within the IS-IS Router capability TL. The TA TLV and TL TLV may be advertised within the IS-IS Router CAPABILITY TLV. A router may generate multiple IS-IS Router CAPABILITY TLVs within an IS-IS LSP with different flooding scopes, with leak across levels and S bit set or not.
9
draft-li-ccamp-auto-mbb-te-path-00IETF 88 CCAMP9 Next Steps Solicit comments and feedback Revise the draft
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.