Download presentation
Presentation is loading. Please wait.
1
AP Chemistry Summer Assignment
Measurements & Nomenclature
2
III. Significant Figures
h = 0.05 cm l = 17.9 cm w = 6.87 cm III. Significant Figures 1. Calculate the area of the dark rectangle. 123 123 cm2 2. Calculate the volume of the object 6 6 cm3
3
III. Significant Figures
3. Calculate the sum of the length, width, and height. 24.82 24.8 24.8 cm 4. What is the length of each segment? 11 cm 10 cm A B C D A = cm B = cm C = cm D = cm
4
C. What is a significant figure?
B. Introduction: When making measurements or doing calculation you should not keep more digits in a number than is ________. These rules of significant figures will show you how to determine the correct number of digits. C. What is a significant figure? Significant figures in a measurement are all values (digits) known precisely, plus ______ digit that is estimated. Example: Make the measurement with the correct significant figures. justified one a. ____________ b. ____________ c. _____________ d. _____________ e. _____________ f. _____________ g. ____________ h. ____________ a. b. c. d. e. f. g. h. 9 cm 10 cm 0 cm 1 cm 9.24 cm 9.00 cm 9.0 cm 0.02 cm 9.88 cm 9.70 cm 9.8 cm 0.90 cm
5
How do you determine sig figs in a measurement that has already been recorded?
Sig Figs: The Rules 1. Every nonzero digit in a recorded measurement is significant. Examples: 47,357 5 sig figs ________ 2 Zeros between nonzero digits are significant. (“Sandwich rule”) Examples: 1, sig figs 305 _______ 3 3. Zeros in front of all nonzero digit are not significant. Examples: sig figs ______ ______ 2 1
6
Zeros at the end of a number and to the right of a decimal point are significant.
Examples: sig figs ______ ________ 4 4 5. Zeroes at the end of a measurement where there is no decimal point are ambiguous. To clearly show the correct number of sig figs, these measurements should be written in scientific notation. Examples: sig figs sig fig 1,000,000 _______ 1 - 7 Examples: Write the number 100,000 with (a) 1 sig fig, (b) 3 sig figs, (c) 5 sig figs. (a) 1 x 105 (b) 1.00 x 105 (c) x 105
7
E. Practice: 1. Determine the number of significant figures for each of the following measurement.
(a) (b) (c) (d) 10.54 (e) x (f) 15,000 (g) (h) 2. When completing calculations, it is often necessary to round the final answer to a particular number of significant figures (round up for 5 and above; keep digits the same for 4 and below). Round the above measurements to 2 significant figures. Example: = = _______________ 6 4 6 4 54000 0.0046 150,000 11 5.4 x 104 4.6 x 10–3 1.5 x 105 3 2-5 4 3 5.2 x 105 1.5 x 104 10 0.075 1.0 x 101 7.5 x 10–2 110 = 1.1 x 102
8
How many significant figures are in each of the following measurements?
24 mL 2 significant figures 3001 g 4 significant figures m3 3 significant figures 6.4 x 104 molecules 2 significant figures 560 kg 2-3 significant figures
9
3. Determine the number of sig figs for each measurement
3. Determine the number of sig figs for each measurement. Round the measurements to 2 sig figs. If original measurement only contains 1 or 2 sig figs, leave the second line blank. # sig figs Rounded Answer _______ ______________ _______ ______________ 3. 1,000,000 _______ ______________ x 102 _______ ______________ _______ ______________ _______ ______________ _______ ______________ x 10-6 _______ ______________ _______ ______________ _______ ______________ 2 4 1.3 x 102 1-7 1.0 x 106 4 5.7 x 102 5 410 = 4.1 x 102 3-5 80,000 = 8.0 x 104 6 3100 = 3.1 x 103 3 4.1 x 10-6 3 1.0 4 1.6
10
3. Continued _______ ______________ _______ ______________ _______ ______________ _______ ______________ _______ ______________ _______ ______________ _______ ______________ _______ ______________ _______ ______________ _______ ______________ # sig figs Rounded Answer 4 14 4 5.4 3-4 1300 = 1.3 x 103 3 5.7 x 10-3 4 0.81 5 18 4 100 = 1.0 x 102 4 3000 = 3.0 x 103 7 1.1 x 105 4 43
11
4. Rules for Significant Figure in Calculations Multiplication or Division: The number of sig figs in the result is the same number as the number in the least precise (least sig figs) measurement. Example: (1) m x 1.4 m = 6.38 m2 (Round to TWO sig figs) = 6.4 m2 (a) x (b) x 3.5 (c) 8.9648 413.84 9.0 4.1 x 102 1.91 Addition or Subtraction: The result has the same number of decimal places as the least precise measurement used in the calculation. Example: m m m = (Rounds to ONE place after the decimal) = 21.1 m (1) 21 cm – 18.3 cm = (2) mm mm = 3 cm mm
12
Significant Figures Multiplication or Division
The number of significant figures in the result is set by the original number that has the smallest number of significant figures 4.51 x = = 16.5 3 sig figs round to 3 sig figs 6.8 ÷ = = 0.061 2 sig figs round to 2 sig figs
13
Significant Figures Addition or Subtraction
The answer cannot have more digits to the right of the decimal point than any of the original numbers. 89.332 1.1 + 90.432 one significant figure after decimal point round off to 90.4 3.70 0.7867 two significant figures after decimal point round off to 0.79
14
IV. Exponential Notation (_________ Notation)
Scientific A. Chemistry examples: 1. Avogadro’s Number 2. Mass of an electron 6.022 x 1023 kg 9.11 x kg B. Technique to change from positional notation to scientific notation: 1. Leave ___ number to the ______ of the decimal. 2. When the decimal is moved to the ______, the exponent is ____________. 3. When the decimal is moved to the ______, the exponent is ____________. 4. Number must contain the same number of ____________ as the original value. 1 left left (+) positive right (-) negative Sig figs (S.F.)
15
C. Convert the following to scientific notation:
(3 s.f) ____________ ____________ ,000,000,000 (2 s.f.) ____________ ____________ 1.35 x 105 5.500 x 10-3 1.2 x 1011 4.441 x 10-8 D. Use of calculator with scientific notation: 1.61 x 10-19 Step 1: Enter the number Step 2: Press the Expontent button ____ or ____ Step 3: Enter the exponent Step 4: If negative exponent, use ____ key. 1.61 EE EXP +/-
16
E. Exponent problems (Use correct sig figs!)
Raising to a power Taking a root Step 1: Enter number Step 1: Enter number Step 2: Press Step 2: Press Step 3: Enter power Step 3: Enter root Step 4: Press Step 4: Press Example: Example: xy 2nd xy = = 9.29 x 106 (a) (14.5)6 = 2.26 (b) (1.72 x 105)4 = 8.75 x 1020 0.0528
17
Scientific Notation The number of atoms in 12 g of carbon:
602,200,000,000,000,000,000,000 6.022 x 1023 The mass of a single carbon atom in grams: 1.99 x 10-23 N x 10n N is a number between 1 and 10 n is a positive or negative integer
18
Scientific Notation Addition or Subtraction 568.762 0.00000772
move decimal left move decimal right n > 0 n < 0 = x 102 = 7.72 x 10-6 Addition or Subtraction Write each quantity with the same exponent n Combine N1 and N2 The exponent, n, remains the same 4.31 x x 103 = 4.31 x x 104 = 4.70 x 104
19
Scientific Notation Multiplication Division
(4.0 x 10-5) x (7.0 x 103) = (4.0 x 7.0) x (10-5+3) = 28 x 10-2 = 2.8 x 10-1 Multiply N1 and N2 Add exponents n1 and n2 Division 8.5 x 104 ÷ 5.0 x 109 = (8.5 ÷ 5.0) x = 1.7 x 10-5 Divide N1 and N2 Subtract exponents n1 and n2
20
Practice 1. If the mass, radius, and height of a cylinder are given, what would be the equation to find the Density? 2. Write the correct number of sig figs for each of the following numbers. ____ 5 35000____ 2-5 3.167 x 109____ 4 100____ 1-3 ____ 6 ____ 1 3. Calculate each problem with the correct sig figs and units. ( ) x 102 g = 12,852 1.29 x 104 g __________ __________ 9.8 x 103 (0.32)(25)(1223.4) = __________ 172.1 m 406.1 m – m = 0.029 or 2.9 x 10-2 __________ (0.0035) / (0.12) = 4. Calculate the following problem with the correct sig figs and units. ____________________ 5.29 x 10-5 or 5.3 x 10-5
21
V. Metric System A. Based on powers of 10
Ex. 1 m = ______ dm = ______ cm = ______ mm B. Uses “___________” and “____________.” 10 100 1000 prefixes Base units 1. Length meter (m) gram (g) 2. Mass liter (L) 3. Volume second (s) 4. Time Joule (J) 5. Energy
22
C. Metric Prefixes: Memorize this table. Prefix. Symbol
C. Metric Prefixes: Memorize this table!!!! Prefix Symbol Multiplier/Factor 1. Peta P 2. Tera T 3. Giga G 4. Mega M 5. kilo k 6. hecto h 7. deka da Base Unit m, g, L, s, J 8. deci d 9. centi c 10. milli m 11. micro µ 12. nano n 13. pico p
24
D. Examples: Multiplier ALWAYS goes with the _____________________.
Base Unit (m, L, g, s, J) 1 Mm = _____ m 1 µg = _____ g 1 Ts = _____ s 1 pm = _____ m 106 10-6 1012 10-12 E. Converting within the metric system using dimensional analysis: Convert to base unit by canceling units (Top unit cancels with _______ unit). Place the multiplier with the _____________________. Place a ___ in front of the unit with ______. To enter multiplier into the calculator, use a __ before the exponent key (NOT A 10). Example: 10-6 bottom base unit (m, L, g, s, J) 1 prefix 1 1 x 10-6 1 EE - 6 10 x 10-6
25
Volume – SI derived unit for volume is cubic meter (m3)
1 L = 1 dm3 1 mL = 1 cm3
26
Dimensional Analysis Method of Solving Problems
Determine which unit conversion factor(s) are needed Carry units through calculation If all units cancel except for the desired unit(s), then the problem was solved correctly. How many mL are in 1.63 L? 1 mL = 10-3 L 1 mL 1.63 L x = 1.63 x 103 mL 10-3 L 10 –3 L 1 mL 1.63 L x = 1.63 x 10-3 L2 mL
27
F. Metric dimensional analysis examples:
1. Convert 3.6 nm to m. 2. Convert 55.6 g to Tg 3. Convert 575 cm to Mm. 4. Convert dag to pg. 5. Convert 78.5 km to m 6. Convert mL to GL. 3.6 x 100 nm 10-9 m = 3.6 x 10-9 m 1 nm 5.56 x 101 g 1 Tg = x Tg 1012 g 5.75 x 102 cm 10-2 m 1 Mm = x 10-6 Mm 1 cm 106 m 4.56 x 10-1 dag 101 g 1 pg = x 1012 pg 1 dag 10-12 g 7.85 x 101 km 103 m 1 m = x 1010 m 1 km 10-6 m 5.90 x 10-4 mL 10-3 L 1 GL = x GL 1 mL 109 L
28
Practice 6.5 x 10-5 1 x 107 4.4 x 104
29
Metric / English Conversion Factors (given on test):
Length Mass 1 inch = 2.54 cm 1 lb. = 16 oz. = 256 drams 1 meter = in 1 kg = lb. 1 mile = km 1 lb = g 1 furlong = 220 yd. Volume Time 1 L = qt fortnight = 2 weeks 1 gal. = 4 qt. = 8 pt. 1 pt. = 2 cups 1 mL = 1 cm3 1 pt. = 16 fl. oz.
30
VI. Conversion Factors:
A. Whenever two measurements are equal, or ___________, a ratio of these two measurements will equal __. Example: ___ ft. = ___ in. can be written as the following ratios: B. Conversion factor: ratio of ___________ measurements. C. Write conversion factors for the following pairs of units: a. miles and feet b. days and year c. yard and feet D. Assume all conversion factors are _________ significant. (Use initial number to determine sig figs). equivalent 1 1 12 equivalent infinitely
31
The speed of sound in air is about 343 m/s
The speed of sound in air is about 343 m/s. What is this speed in miles per hour? meters to miles seconds to hours 1 mi = 1609 m 1 min = 60 s 1 hour = 60 min 343 m s x 1 mi 1609 m 60 s 1 min x 60 min 1 hour x = 767 mi hour
32
VII. Dimensional Analysis I
Units (___________) are used to solve a problem. Examples: A. The average human brain weighs 8.13 lb. What is the mass in ng? B. How many microseconds in 8.37 years? Write answer in scientific notation. Dimensions lb g ng 8.13 lb. 453.6 g 1 ng = x 1012 ng 1 lb. g 10-9 y d h min s s 8.37 y 365 d 24 h 60 min 60 s 1 s 1 y 1 d 1 h 1 min 10-6 s = x 1014 s
33
C. A container contains 15 kL. Convert this to cm3.
D. Apollo 13 re-entered the Earth’s atmosphere at a speed of 32,805 ft/s. What was the speed in miles per hour (mph)? kL L mL cm3 15 kL 103 L 1 mL 1 cm3 = 1.5 x 107 cm3 1 kL 10-3 L 1 mL ft. s mi min h 32,805 ft s 60 s 60 min 1 mi = 22,367 mi/h 1 min 1 h 5,280 ft
34
E. An arrow moves towards you at 235 m/s
E. An arrow moves towards you at 235 m/s. How many miles could the arrow move in one day?(Assume the arrow never falls to the Earth). F. (a) Determine the number of cm3 in a 20.0 fl. oz. bottle of Coke. (b) What is the mass of the Coke in pounds, assuming that it is the density of water (1 g / mL)? m s in ft mi min h d 235 m s 60 s 60 min 24 h 39.37 in 1 ft 1 mi 1 min 1 h 1 d 1 m 12 in 5,280 ft = x 104 mi/d fl. oz. pt qt L mL cm3 cm3 g lb (a) 20 fl. oz. 1 pt 4 qt 1 L 1 mL 1 cm3 x x x x x 16 fl.oz. 8 pt 1.057 qt 10-3 L 1 mL = 591 cm3 (b) 591 cm3 1 g 1 lb x x = lb 1 cm3 453.6 g
35
G. The speed of light is 3. 00 x 108 m/s
G. The speed of light is 3.00 x 108 m/s. How many miles does light travel per year? H. Carl Lewis set the world record for the m dash on August 25, 1991 in the finals of the World Track Championships with a time of 9.86 seconds. What was his average speed in miles per hour? m s km mi min h d y s 3.00 x 108 m 60 s 60 min 24 h 365 d 1 km 1 mi 1 min 1 h 1 d 1 y 103 m 1.609 km = x 1012 mi/y m s km mi min h 100.0 m 9.86 s 60 s 60 min 1 km 1 mi 1 min 1 h 103 m 1.609 km = mi/h
36
VIII. Dimensional Analysis II: Square and cubic units
A. Convert 3.7 ft2 to in2. B. The engine in a Jeep Cherokee is 4.0 L. Calculate the engine volume in (a) in3, and (b) ft3. ft in 3.7 ft2 12 in 12 in x x = in2 = 5.3 x 102 in2 1 ft 1 ft 2 3.7 ft2 12 in x = in2 = 5.3 x 102 in2 1 ft L mL cm3 in in ft 3 (a) 4.0 L 1 mL 1 cm3 1 in x x x = in3 10-3 L 1 mL 2.54 cm = 2.4 x 102 in3 3 (b) in3 1 ft x = ft3 12 in
37
C. The density of gold is 19. 3 g/mL
C. The density of gold is 19.3 g/mL. Calculate the density of gold in (a) lb/ft3, (b) kg/m3. g mL lb (a) cm3 in ft 3 3 19.3 g mL 1 lb 1 mL 2.54 cm 12 in x x x x 453.6 g 1 cm3 1 in 1 ft = lb/ft3 = x 103 lb/ft3 g cm3 kg (b) m 3 19.3 g cm3 1 kg 1 cm x x 103 g 10-2 m = 19,300 kg/m3 = x 104 kg/m3
38
D. A spherical container with a diameter of 2
D. A spherical container with a diameter of 2.85 dam is filled with water. (a) Determine the volume of the sphere in cm3. (b) Determine the mass of the water in kilograms. d = dam d = dam 101 m 1 cm = x 103 cm 1 dam 10-2 m r = x 103 cm (a) = x 1010 cm3 (b) 1.21 x 1010 cm3 1 g 1 kg x x 1 cm3 103 g = x 107 kg
39
E. The dimensions of a swimming pool are 13. 5 ft. x 22 m x 225 cm
E. The dimensions of a swimming pool are 13.5 ft. x 22 m x 225 cm. (a) Determine the volume of the pool in m3. (b) Determine the mass of the water in pounds. (a) V = l · w · d 13.5 ft 12 in 1 m = m x x 1 ft 39.37 in V = m · 22 m · 2.25 m = m3 = 2.0 x 102 m3 3 1 g 1 lb (b) x 102 m3 1 cm x x x 10-2 m 1 cm3 453.6 g = 4.5 x 105 lb
40
F. A 12.0 fl. oz. soda spilled onto the floor into a cylindrical puddle with a 15.4 inch diameter. Calculate the depth (height) of the puddle in μm. d = 15.4 in d = 15.4 in 2.54 cm = cm x h = ? 1 in r = cm (a) fl.oz. pt qt L mL cm3 12 fl.oz. 1 pt 1 qt 1 L 1 mL 1 cm3 x x x x x 16 fl.oz. 2 pt 1.057 qt 10-3 L 1 mL = cm3 (b) = cm (c) 0.295 cm 10-2 m 1 µm = x 103 µm x x 1 cm 10-6 m
41
G. The volume of a red blood cell is 90. 0 µm3
G. The volume of a red blood cell is 90.0 µm3. What is its diameter in mm? Assume it is spherical. V = 90.0 µm3 = µm 2.780 µm 10-6 m 1 mm 2 = x 10-3 mm x x x 1 µm 10-3 m
42
H. The lid of a soup can is 5. 40 cm across and the can is 12
H. The lid of a soup can is 5.40 cm across and the can is 12.2 cm high. What is the volume of the can in fluid ounces? d = 5.40 cm h = 12.2 cm r = cm V = (2.70 cm)2 • 12.2 cm = cm3 cm3 mL L qt pt fl.oz. cm3 1 mL 10-3 L 1.057 qt 2 pt 16 fl.oz. x x x x x 1 cm3 1 mL 1 L 1 qt 1 pt = fl.oz.
43
Inorganic Nomenclature
44
Fig. 2.11 H+ Be2+
45
1. Column: _______ or _______ (Similar properties) 2. Row: _______.
I. Background: A. Periodic Table 1. Column: _______ or _______ (Similar properties) 2. Row: _______. 3. _______: Left of staircase (Majority of the elements). 4. ___________: right of staircase. Exception: _____(non-metal)(____________________) 5. ____________: touching the staircase. Exception: ___ (metal). group family period Metals Non-metals H Left of the staircase Metalloids Gagag Al
46
Period Group 2.4
47
Ions (Charged atoms) 1. ________: positively charged (lost e-). 2. ________: negatively charged(gained e-). C. Trends in the periodic table 1. Using the planetary model – (simplified model of atom) 2. Energy levels can contain a maximum of: 1st energy level: ____ 2nd energy level: ____ 3rd energy level: ____ (____) 3. _________ are the keys to chemical bonds. Cations Anions 2 8 8 18 Electrons
48
Ex. Column 1 (____________) Column 18 (___________) Alkali Metals Noble gases H (___ e-) 1 He (___ e-) 2 Ne (___e-) 10 Li (___e-) 3 Na (___e-) 11 Ar (___e-) 18 Similarities: (________________) ______________ 1 e- in outer shell Full outer shell
49
Non-metals only (above staircase)
Atoms can gain or lose ___ to achieve a full outer shell (more stable). Atoms will do what is _______ (least energy) i.e Oxygen has 6 valence e-: easier to _____ 2 than to ____ 6. e- easiest gain lose Group # of valence e- Gain or lose e- Charge 1 2 13 14 15 16 17 18 x Lose 1 +1 x Lose 2 +2 x Lose 3 +3 x Lose or gain 4 +/-4 Non-metals only (above staircase) x Gain 3 -3 x Gain 2 -2 x Gain 1 -1 x
50
Non-metal Metal loses e- gains e- Transfer neutral
II. Binary Ionic Compounds A. Background info 1. Metal / ___________ ( _______ is always written first). 2. One element ________ and the other ________. 3. ___________ of e- 4. Charged ions attract one another (opposites attract). 5. The compound is _________ Non-metal Metal loses e- gains e- Transfer neutral
51
B. Ex. Sodium & chlorine NaCl (1 Na to every Cl) (Metal 1st) Na Cl Na+ Cl Ex. Calcium & bromine CaBr2 (2 Br for every 1 Calcium) Br (Metal 1st) Ca Ca2+ Br Br Ex. Lithium & oxygen Li2O (2 Li for every 1 Oxygen) (Metal 1st) Li Li O2 O Li Ex. Aluminum & sulfur Al2S3 (3 Al for every 2 S) Al S Al3+ S2 S Al S
52
C. Shortcut to determining formula (Criss-Cross method):
1. ________ from charge becomes the subscript. 2. All ionic compounds are _________ (no + or -). 3. Subscripts are written in ________ possible ratio. The number “1” is never written (It is implied). Examples Number neutral lowest Ex. Al O2- Ex. Li+ O2- Al2O3 Li2O (Aluminum oxide) (Lithium oxide) Ex. Ca2+ O2- Ex. Mg2+ N3- Mg3N2 Ca2O2 CaO (Calcium oxide) (Magnesium nitride)
53
D. Nomenclature of binary ionic compounds (bi = 2).
1. _____ is named first (name of atom). 2. ____________ is named second, ending changed to ____. If the metal (cation) can have multiple charges, the charge is written as a roman numeral (IUPAC). (Fe, Cu, Co, Hg, Mn, Sn, Pb) Metal Non-metal -ide 4. Formula to name: a. Li2O _________________ b. Al2O3 _________________ c. CaO _________________ d. Mg3N2 _________________ Lithium oxide Aluminum oxide Calcium oxide Magnesium nitride
54
Iron ___ oxide (III) Ferric oxide e. Fe2O3 __________________ (___________________) f. SnO2 __________________ (___________________) g. CuCl ___________________ (___________________) h. MnN ____________________ (___________________) 2(x) + 3(-2) = 0 x = +3 Tin ___ oxide (IV) Stannic oxide 1(x) + 2(-2) = 0 x = +4 Copper __ chloride (I) Cuprous chloride 1(x) + 1(-1) = 0 x = +1 Manganese ___ nitride (III) Manganic nitride 1(x) + 1(-3) = 0 x = +3
55
Be2+ F – BeF2 K+ Br – KBr Sn2+ O2- SnO Co2S3 Co3+ S2- SrI2 Sr2+ I –
Name to formula: a. Beryllium fluoride ____________ ___________ b. Potassium bromide ____________ ___________ c. Tin (II) oxide ____________ ___________ d. Cobaltic sulfide ____________ ___________ e. Strontium iodide ____________ ___________ Be2+ F – BeF2 K+ Br – KBr Sn2+ O2- SnO Co2S3 Co3+ S2- SrI2 Sr2+ I –
56
6. Polyatomic Ion: A group of atoms with a _______ charge.
Ex. (1) CN- = (2) NH4+ = (3) OH- = a. Polyatomic ions will _______ stay together as a group. b. If there is more than one polyatomic ion, it must be placed in ____________. single cyanide ammonium hydroxide always parentheses
57
Cobalt (III) hydroxide Co(OH)3 Co3+ OH- Cobaltic hydroxide
Examples: Ions Formula Name Iron (II) hydroxide Fe2+ OH- Fe(OH)2 Ferrous hydroxide Ca2+ CN- Ca(CN)2 Calcium cyanide NH4+ O2- (NH4)2O Ammonium oxide NaCN (No Parentheses b/c only 1) Sodium cyanide Na+ CN- Cobalt (III) hydroxide Co(OH)3 Co3+ OH- Cobaltic hydroxide
58
III. Helpful Hints to Memorize Oxyanions
In learning the formulas and charges of common oxyanions, start with the –ate form. From it follows that: hypo______ite = 2 less oxygens _______ite = 1 less oxygen _______ate per______ate = 1 more oxygen **ALL forms have the SAME charge!**
59
A Guide to Determine Whether the –ate Formula is –XO3 or –XO4:
1 2 3 4 5 6 13 14 15 16 17 18 Transition Metals B C N Si P S Cl As Se Br I
60
A Guide to Determine What the Charge of the Oxy-Anion is:
1 2 3 4 5 6 13 14 15 16 17 18 Transition Metals -3 -2 -1 B C N - 4 -3 -2 -1 Si P S Cl -3 -2 -1 As Se Br -1 I
61
ClO4- Examples: Borate = ________ Carbonate = ________ Nitrate = ________ Chlorate = ________ Nitrite = ________ Perchlorate = ________ BO33- CO32- NO3- ClO3- NO2-
62
C. “_____” = Sulfur replacing an oxygen.
Ex. Sulfate = ________ Thiosulfate = ________ Ex. Cyanate = ________ Thiocyanate= ________ Thio- SO42- S2O32- OCN- SCN-
63
IV. Ternary Compounds: (compounds containing ___ or more elements).
1. Name the _______ 2. Find the appropriate name of the _______. 3. Formula to name: 3 cation anion a. Li2SO4 _______________ b. Fe(NO3)3 _________________________ Lithium sulfate Iron ___ (_____) nitrate (III) ferric 1(x) + 3(-1) = 0 x = +3
64
c. CdC2O4 __________________
d. Cu3AsO3 ___________________________ e. Mn2SiO4 ________________________________ f. (NH4)2SO4 __________________ Cadmium oxalate Copper __ (_______) arsenite (I) cuprous 3(x) + 1(-3) = 0 x = +1 Manganese __ (___________) silicate (II) manganous 2(x) + 1(-4) = 0 x = +2 Ammonium sulfate
65
Name to formula: a. Potassium thiocyanate: __________ _________ b. Aluminum permanganate: __________ _________ c. Plumbic acetate: ____________ ___________ d. Cobalt (III) oxalate: ____________ ___________ e. Sodium hypochlorite: __________ __________ K+ SCN- KSCN Al3+ MnO4- Al(MnO4)3 Pb+4 C2H3O2- Pb(C2H3O2)4 Co3+ C2O42- Co2(C2O4)3 Na+ ClO- NaClO
66
V. Nomenclature of Hydrates
A. Hydrate: Ionic compound with ______ molecules stuck in the _______ lattice. The water is included in the ______ and formula. 1. ZnSO4 7 H20: __________________________ 2. CaCO3 3 H2O: __________________________ 3. Cu2C2O4 2H2O: _________________________________ 4. Calcium chloride pentahydrate: _____________ 5. Cupric acetate monohydrate: _______________________ water crystal name Zinc sulfate heptahydrate Calcium carbonate trihydrate Copper (I) (cuprous) oxalate dihydrate CaCl2 5H20 Cu(C2H3O2)2 H20
67
VI. Binary Molecular Compounds
A. Molecular (________) compounds 1. Non-metal to __________. ______of staircase including hydrogen 2. ________ of electrons. Ex. 3. Non-metals can often combine in several different ways. covalent non-metal Right Sharing Cl Cl (Both Cl need “1” electron) CO CO2
68
Nomenclature of binary molecular compounds:
Greek prefixes are used: mono = hexa = di = hepta = tri = octa = tetra = nona = penta = deca = 1 6 2 7 3 8 4 9 5 10 2. The prefix “_______” is omitted for the 1st element. Ex. CO = _________________ mono Carbon monoxide
69
For oxides the ending “______” is omitted.
a. N2O = ____________________ b. N2O3 = ____________________ c. N2O4 = ____________________ d. NO = ____________________ e. NO2 = ____________________ f. NO5 = ____________________ o or a Dinitrogen monoxide Dinitrogen trioxide Dinitrogen tetroxide Nitrogen monoxide Nitrogen dioxide Nitrogen pentoxide
70
Compound Ionic Covalent (Charges Cancel Out) (No Charges) 1. 2. 2. 3. 3. Metal / Non-metal Non-metal only No Prefixes!!! Prefixes Li20 = Lithium oxide I2O4 = Diiodine tetroxide Metal Non-metal Ex. _______________________ _____________________ P2O5 Diphosphorus pentoxide NCl3 Nitrogen trichloride
71
Nomenclature (Acids) A. Acids: Compounds that contain __________ as the positive ion (H+). B. Exceptions: _____ (water) & ______ (hydrogen peroxide). C. Binary Acids: Acids that ___ ____ contain oxygen. 1. Use prefix “______” 2. Add stem or full name of ______. 3. Add suffix “___”. Add the word ______. Ex. HBr = _________________________ HCl = _________________________ HCN = ________________________ hydrogen H20 H2O2 do not hydro anion ic acid Hydrobromic Acid Hydrochloric Acid Hydrocyanic Acid
72
Ternary Acids: Contain ____ or more elements, __________ oxygen.
Acids formed with anions that contain ______ become ____ acids. HNO3 (NO3- = _______) __________ HClO4(ClO4- = ___________) _____________ H2SO4(SO42- = ________) ___________ H3PO4(PO43- = ___________) _______________ 3 including -ate -ic Nitrate Nitric acid Perchlorate Perchloric acid Sulfate Sulfuric acid Phosphate Phosphoric acid
73
-ous Acids formed with anions that contain ____ become ______ acids. HNO2 (NO2- = ________) ____________ HClO2 (ClO2- =_________) _____________ H2SO3 (SO32- =________) ______________ -ite Nitrite Nitrous acid Chlorite Chlorous acid Sulfite Sulfurous acid Name to formula: a. cyanic acid __________________ ________ b. dichromic acid ______________________ _______ c. hypochlorous acid _____________________ _______ d. hydrosulfuric acid _______________ ______ H+ OCN- (Cyanate) HOCN H+ Cr2O72- (Dichromate) H2Cr2O7 H+ ClO- (Hypochlorite) HClO H+ S2- (Sulfide) H2S
74
• • Compounds Ionic Covalent Binary Ternary Acids Binary Ternary
(Metal / Non-metal) Binary Ternary Acids Contain H+ Binary Ternary w/ oxygen Hydrates Hydrates Non-metal / Non-metal Uses prefixes, -ide I2O7 Diiodine heptoxide 2 elements -ide Roman numeral (if needed) ie. Calcium chloride CaCl2 3 or more elements Anion is named Roman numerals (if needed) ie. Calcium carbonate CaCO3 No oxygen Hydro__ic acid ie, Hydrochloric acid HCl -ate—ic acid H2CO3 Carbonic -ite---ous acid H2SO3 Sulfurous w/ H2O Uses prefixes ie. Calcium chloride dihydrate CaCl H2O • w/ H2O Uses prefixes ie. Calcium carbonate trihydrate CaCO H2O •
75
2.7
76
EOCP 2.88 Mg(HCO3)2 Mg2+ HCO3- Cl- Strontium chloride Sr2+ Fe(NO2)3
Iron (III) nitrite Mn2+ ClO3- Mn(ClO3)2 Sn4+ Br- Tin (IV) bromide Co3(PO4)2 Cobalt (II) phosphate Mercury (I) iodide Hg2I2 Cu+ Copper (I) carbonate CO32- Li+ N3- Li3N Al2S3 Aluminum sulfide
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.