Download presentation
Presentation is loading. Please wait.
Published byLiliana Gray Modified over 9 years ago
1
Section 4.6 – Completing the Square Students will be able to: To solve equations by completing the square To rewrite functions by completing the square Lesson Vocabulary: Completing the Square
2
Section 4.6 – Completing the Square
3
Forming a square with model pieces provides a useful geometric image for completing the square algebraically. Essential Understanding: Completing a perfect square trinomial allows you to factor the completed trinomial as the square of a binomial.
4
Section 4.6 – Completing the Square Problem 1: What is the solution of each equation? 4x 2 + 10 = 46
5
Section 4.6 – Completing the Square Problem 1: What is the solution of each equation? 3x 2 – 5 = 25
6
Section 4.6 – Completing the Square Problem 1: What is the solution of each equation? 7x 2 – 10 = 25
7
Section 4.6 – Completing the Square Problem 1: What is the solution of each equation? 2x 2 + 9 = 13
8
Section 4.6 – Completing the Square Problem 2: While designing a house, an architect used windows like the one shown here. What are the dimensions of the window if it has 2766 square inches of glass?
9
Section 4.6 – Completing the Square Problem 3: What is the solution of x 2 + 4x + 4 = 25?
10
Section 4.6 – Completing the Square Problem 3: What is the solution of x 2 – 14x + 49 = 25?
11
Section 4.6 – Completing the Square If x 2 + bx is not part of a perfect square trinomial, you can use the coefficient b to find a constant c so that x 2 + bx + c is a perfect square. When you do this, you are completing the square.
12
Section 4.6 – Completing the Square When you do this, you are completing the square.
13
Section 4.6 – Completing the Square When you do this, you are completing the square.
14
Section 4.6 – Completing the Square Problem 4: What value completes the square for x 2 – 10x? Justify your answer.
15
Section 4.6 – Completing the Square Problem 4: What value completes the square for x 2 + 6x? Justify your answer.
16
Section 4.6 – Completing the Square
17
Problem 5: What is the solution of 3x 2 – 12x + 6 = 0?
18
Section 4.6 – Completing the Square Problem 5: What is the solution of 2x 2 – x + 3 = x + 9?
19
Section 4.6 – Completing the Square You can complete a square to change a quadratic function to vertex form. Problem 6: What is y = x 2 + 4x – 6 in vertex form? Name the vertex and y-intercept.
20
Section 4.6 – Completing the Square Problem 6: What is y = x 2 + 3x – 6 in vertex form? Name the vertex and y-intercept.
21
Section 4.6 – Completing the Square Problem 6: What is y = 2x 2 – 6x – 1 in vertex form? Name the vertex and y-intercept.
22
Section 4.6 – Completing the Square Problem 6: What is y = -x 2 + 4x – 1 in vertex form? Name the vertex and y-intercept.
23
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve the quadratic by completing the square: x 2 – x = 5
24
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve the quadratic by completing the square: 2x 2 – ½x = 1/8
25
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve the quadratic by completing the square: 3x 2 +x = 2/3
26
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve the quadratic by completing the square: -.25x 2 – 0.6x + 0.3 = 0
27
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve for x in terms of a: 2x 2 – ax = 6a 2
28
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve for x in terms of a: 6a 2 x 2 – 11ax = 10
29
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve for x in terms of a: 4a 2 x 2 + 8ax + 3= 0
30
Section 4.6 – Completing the Square EXTRA PROBLEMS: Solve for x in terms of a: 4a 2 x 2 + 8ax + 3= 0
31
Section 4.6 – Completing the Square
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.