Download presentation
Presentation is loading. Please wait.
Published byAmy Haynes Modified over 9 years ago
1
Machine Learning Theory Maria-Florina Balcan Lecture 1, Jan. 12 th 2010
2
2 Image Classification Document Categorization Speech Recognition Branch Prediction Protein Classification Spam Detection Fraud Detection Machine Learning Playing Games Computational Advertising
3
what kinds of tasks we can hope to learn, and from what kind of data Goals of Machine Learning Theory Develop and analyze models to understand: what types of guarantees might we hope to achieve prove guarantees for practically successful algs (when will they succeed, how long will they take?); Algorithms Interesting connections to other areas including: Combinatorial Optimization Probability & Statistics Game Theory Information TheoryComplexity Theory develop new algs that provably meet desired criteria
4
4 Example: Supervised Classification Goal: use emails seen so far to produce good prediction rule for future data. Not spam spam Decide which emails are spam and which are important. Supervised classification
5
5 example label Reasonable RULES: Predict SPAM if unknown AND (money OR pills) Predict SPAM if 2money + 3pills –5 known > 0 Represent each message by features. (e.g., keywords, spelling, etc.) Example: Supervised Classification + - + + + - - - - - Linearly separable
6
6 Two Main Aspects of Supervised Learning Algorithm Design. How to optimize? Automatically generate rules that do well on observed data. Confidence Bounds, Generalization Guarantees, Sample Complexity Confidence for rule effectiveness on future data. Well understood for passive supervised learning.
7
7 Semi-Supervised Learning Using cheap unlabeled data in addition to labeled data. Active Learning The algorithm interactively asks for labels of informative examples. Other Protocols for Supervised Learning Theoretical understanding severely lacking until a couple of years ago. Lots of progress recently. We will cover some of these. Learning with Membership Queries Statistical Query Learning
8
Structure of the Class Simple algos and hardness results for supervised learning. Classic, state of the art algorithms: AdaBoost and SVM. Basic models for supervised learning: PAC and SLT. Standard Sample Complexity Results (VC dimension) Weak-learning vs. Strong-learning
9
Structure of the Class Classification noise and the Statistical-Query model Incorporating Unlabeled Data in the Learning Process. Reinforcement Learning Learning Real Valued Functions Modern Sample Complexity Results Rademacher Complexity Margin analysis of Boosting and SVM Incorporating Interaction in the Learning Process: Active Learning Learning with Membership Queries
10
Admin Course web page: 6 hwk assignments. Exercises/problems (pencil-and-paper problem-solving variety). Small project: explore a theoretical question, try some experiments, or read a paper and explain the idea. Short writeup and possibly presentation. Small groups ok. Take-home exam. http://www.cc.gatech.edu/~ninamf/ML10/ [60%] [25%] [15%]
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.