Download presentation
Presentation is loading. Please wait.
Published byMelissa Conley Modified over 9 years ago
1
1 ECE 3336 Introduction to Circuits & Electronics Note Set #12 Frequency Response More About Filters Spring 2015, TUE&TH 5:30-7:00 pm Dr. Wanda Wosik
2
2 Outline Frequency Response and System Concept We will cover the following topics: Second-Order Filters Transfer Function Calculation Bode Plots for Those Filters
3
3 Bode Plots We will repeat what we know about Bode plots from the first order filters: Bode Plots will be used to simplify graphical representation of the magnitude and phase of the transfer functions. We will use them instead of plots such as shown in the figure below for high-pass filters and obtained from calculation of |H(j )| and H(j ). Bode Plots will give us approximation of the transfer function in the whole range of frequency changes. Accuracy will be acceptably even at the breakpoint frequencies. Bode Plots will give us straight line approximations both for the magnitude and phase of the Transfer Function. That will allow us to easily predict its frequency dependence. Magnitude Phase 00 00 0.707 45°
4
4 If we use decibels (dB) defined as We will find the magnitude of the transfer function Now we will use approximations for the magnitude and the phase instead of calculating step by step the transfer characteristics. They will be accurate! Derivation of Bode Plots which will be expressed in decibels |H(j ) dB |
5
5 -20dB/dec 0° -45°/dec -90° For << 0 |H(j )| dB =-20log 10 (1)=0 dB At = 0 |H(j )| dB =-20log 10 √(1+1)=-3 dB Plotting Bode Plots of the Transfer Function -45° 00 =0=0 =10 0 H(j -tan -1 (1)=-45° H(j j -tan -1 (10)=-90° We will plot the MAGNITUDE at selected multiples of 0. Then we will plot the PHASE 00 For >> 0 =10 0 |H(j )| dB =-20log(10)=-20 dB etc. =100 0 =1000 0 The influence of 0 is seen in |H(j )| for all subsequent frequencies. The 0 affects the phase only locally: within two decades only also known as 3dB frequency |H(j )| dB =-20log(100)=-40 dB = 0 /10 H(j -tan -1 (1/10)=0°
6
6 Bode Plots of Higher-Order Filters In determining the transfer function the most important step is to find the breakpoint (cutoff, half-power, 3dB=all synonyms) frequency. The influence of the breakpoint frequency is seen in a decrease (or increase) of the amplitude response (magnitude of |H(j )|) everywhere beyond 0 but is local around 0 by ±1 decade only for the phase. In the higher-order frequency response functions there may be many cutoff frequencies. These frequencies may affect the magnitude by ±20 dB/dec and the phase by ±45°/dec. However, in most cases there will be significantly higher slops than ±20 dB/dec and ±45°/dec in the corresponding Bode plots. Such filters will allow for better selectivity in signal detection or attenuation. The frequency response function of higher order filters can be found from cascaded transfer functions: As earlier we will find the amplitude response that we want to measured in dB: And the phase response. Such a format allows us to use Bode plots to look at the frequency dependences of the transfer function.
7
7 Bode Plots of Higher-Order Filters Cascaded Transfer Function EXAMPLE: A circuit has the frequency response function We have to find the cutoff frequencies, calculate the amplitude response and the phase response. We will do it by factoring each term to obtain a familiar term: j 0 +1. 33 11 22 K Now we calculate the amplitude response And the phase response
8
8 Bode Plots for our Example Higher-Order Filter 5 10 100 5 10 100 5 10 100 5 10100
9
9 Bode Plots of Another Example of a Higher-Order Filter The new transfer function is now as follows:We factor the function to the standard form: In order to find the cutoff frequencies. They are: 100, 30, and 3,000 rad/s. There is the j term in the numerator. There is no breakpoint frequency associated with this term. So we have to find a specific point on the amplitude response For the phase. we have always 90° since does not affect the phase here. The complex number for this term j has only an imaginary part. 30 100 3,000 30 100 3,000 30 100 3,000 Amplitude response Phase response final
10
10 Bandpass Filters Bandpass filters allow for passing selective ranges of frequency. The difference from the first order filters is that in the bandpass filters there are lower and upper limits of passing frequencies. Such filters are usually made using both storage elements: the capacitor and inductor However, they can also be made as RC filters band pass rejection band |H(j )| Resonance filters passing rejection
11
11 RC Filters for Bandpass Applications Bandstop filters can be also made using RC as shown below. We will NOT work out these examples in class. Bandpass filters can be also made using RC as shown below
12
12 Bandpass and Resonant Filters Bandpass filters will most frequently include all three elements: a capacitor, inductor, and resistor. The main reason these filters operate as bandpass (or rejection) is that capacitors have their impedance Z decreasing with frequency Z=1/j C, while the inductive impedance increases with frequency Z=j L. We can expect therefore that there will be a range (band) of frequency when both these elements will pass (or stop) the signals. Examples of such filters are shown below. We can study transfer functions of bandpass and resonant filters using the same techniques that we used for the first order filters. We can also plot the magnitude and phase of such filters using Bode plots.
13
13 To monitor the frequency dependence of a filter we need to derive the Transfer Function H(j ). We will use the same approach as we used for the low-pass and high-pass filters. We start with the first example. To find H(j ) we have to find V 0 (j ) as a function of V i (j ). As earlier, we will use the voltage divider Bandpass Filters - Transfer Functions Two roots of this quadratic equation define two frequencies 1 and 2 that determine the passband or bandwidth B= 2 - 1 1 and 2 are determined by the circuit parameters! The “A” is a constant that does no depend on Which gives us a quadratic equation:
14
14 Plotting the Transfer Function Magnitude Phase as highpass filter as lowpass filter as highpass filter as lowpass filter The transfer function must be represented by its magnitude and phase so we rewrite H(j ) to show |H(j )| and H(j . So that we can find the magnitude and phase If we plot both plots we notice that they seem to be composed of high- and low pass filters
15
15 Parameters of the Transfer Function Where: Is a natural or resonant frequency Is a quality factor Is a damping ratio The role the quality factor Q plays in the bandwidth B (notice: it affects the selectivity) 11 Phase Amplitude It is known as Half-power Bandwidth (1/√2) defined by Half-power Frequencies 1 and 2 22 Q Q We will introduce parameters that will help us to easily interpret Bode plots, which describe filter operation. We start with the Transfer Function:
16
16 Summary Periodic signals are represented by Fourier series where harmonics have increasing frequency and decreasing amplitude. The frequency response of linear circuits gives the important information about the distortion of signals caused by amplitude and phase changes in the circuit. This information is used to design Filters, which are tuned to specific frequencies for attenuation. First and higher order filters are analyzed using the Transfer Function. We can predict the amplitude response and phase response as a function of frequency. We represent these responses using Bode plots.
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.