# Absolute Value Inequalities

## Presentation on theme: "Absolute Value Inequalities"— Presentation transcript:

Absolute Value Inequalities
Graph the absolute value function then shade above OR below Solid line…y <, y> Dashed line…y<, y> Shade above y>, y> Shade below…y<, y<

2) Absolute Value Inequalities
Example 1: Graph y < |x – 2| + 3

2) Absolute Value Inequalities
Example 1: Graph y < |x – 2| slope = 1 DASHED line Shade BELOW Vertex = (2, 3)

2) Absolute Value Inequalities
Example 1: Graph y < |x – 2| slope = 1 DASHED line Shade BELOW Vertex = (2, 3)

2) Absolute Value Inequalities
Example 1: Graph y < |x – 2| slope = 1 DASHED line Shade BELOW Vertex = (2, 3)

2) Absolute Value Inequalities
Example 1: Graph y < |x – 2| slope = 1 DASHED line Shade BELOW Vertex = (2, 3)

2) Absolute Value Inequalities
Example 1: Graph y < |x – 2| slope = 1 DASHED line Shade BELOW Vertex = (2, 3)

2) Absolute Value Inequalities
Example 2: Graph –y + 1 < -2|x + 2|

2) Absolute Value Inequalities
Example 2: Graph –y + 1 < -2|x + 2| -y < -2|x + 2| - 1 y > 2|x + 2| + 1 -y so CHANGE the direction of the inequality

2) Absolute Value Inequalities
y > 2|x |

2) Absolute Value Inequalities
y > 2|x | Slope = 2 Solid line Shade above Vertex = (-2, 1)

2) Absolute Value Inequalities
y > 2|x |

2) Absolute Value Inequalities
y > 2|x |

2) Absolute Value Inequalities
y > 2|x |

2) Absolute Value Inequalities
y > 2|x |

2) Absolute Value Inequalities
Example 3: Write an equation for the graph below.