Presentation is loading. Please wait.

Presentation is loading. Please wait.

New Cancer Therapies Based on Thyrosine Kinase Inhibitors

Similar presentations


Presentation on theme: "New Cancer Therapies Based on Thyrosine Kinase Inhibitors"— Presentation transcript:

1 New Cancer Therapies Based on Thyrosine Kinase Inhibitors
Axel Ullrich Max-Planck-Institute of Biochemistry Martinsried, Germany November 7, 2008

2

3 Targeted Cancer Therapy „The Dream of the Magic Bullet“
Side Effect-Free Cure of Cancer

4 Paul Ehrlich 1854 - 1915 Father of Chemotherapy
Salvarsan for Treatment of Syphilis Nobel Prize 1908 “Magic Bullet Concept” Ehrlich in his office

5 Signalling Pathways

6 Human Epidermal Growth Factor Receptor (EGFR)
Size: Da Length: 1186 aa MW mRNA: 5.8 / 10.5 kb Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, and Waterfield MD (1984). Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Bye J, Whittle N, Waterfield MD, and Seeburg PH (1984). Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature

7 EGFR / v-erbB EGF-R v-erbB-H v-erbB-ES4 F/S699 F/S699 T/K718 I/V705
H/R811 Q/L840 S/I932 Δ1034 Δ Y/N1091

8 RTK-derived Oncogene Products
neu v-fms M/V 11 R/Q 91 S/L 301 S/A 374 Y/H 461 P/Q 505 T/A 587 P/L 680 G/D 711 v-erbB-H v-erbB-ES v-kit F/S699 T/K718 H/R811 Q/L840 S/I932 Δ1034 Δ Y/N1091 F/S699 I/V705 Δ AY G/D Δ 34 aa Δ 71 aa Δ 40 aa Δ 40aa

9 Human EGF Receptor-Related Receptor HER2 / neu / c-erbB2
Size: Da Length: 1234 aa MW mRNA: 4.8 kb King CR, Kraus MH, and Aaronson SA. (1985) Amplification of a Novel v-erbB-related Gene in a Human Mammary Carcinoma. Science 229, Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U, Levinson A, and Ullrich A. (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal localization with neu oncogene. Science 230, Schechter AL, Hung MC, Vaidyanathan L, Weinberg RA, Yang-Feng TL, Francke U, Ullrich A, and Coussens L (1985). The neu gene: An erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science

10 “The Herceptin Story” Oncogene Homology-Based Target Discovery
Genentech: R. Hudziak M. Shepard B. Fendley L.Coussens P. Carter Herceptin Development Team Clinical Collaborator: D. Slamon, UCLA

11

12 HERCEPTIN History Cloning of EGFR cDNA Relation to V-erbB 1984
Slamon et al. Science HER2 gene amplification in breast cancer and correlation with disease progression 1987 1985 HER2 Sequence published Coussens et al. 1989 Hudziak et al. MCB Anti-tumor effect of MAb 4D5 and 2C4 Phase I Rhu MAb 1992 1993 Phase II Phase III 1995 Approval In Europe 2000 1998 FDA 2002 MAb 2C4 In Development

13

14

15 HERCEPTIN Efficacy of Monotherapy in HER2/neu +++ Patients Low (15%)
Reminder: Cancer is NOT a Monogenic Disease Moving Disease Target due to Genetic Plasticity of Tumor Cells Combination Therapy HERCEPTIN + - Anthracyclines - Taxotere - Platinum Salts - other MABs - etc

16 The EGFR Family Signalling Network Transcription factors
TGFa (1) EGF (1) Epiregulin (1,4) Beta- cellulin (1) HB-EGF (1,4) Amphi- regulin (1) NRG1 (3,4) NRG2 (4) NRG3 (4) NRG4 (4) LPA Thrombin ET, etc. Ligands Cytokines a b a b Input layer 2 2 4 2 1 Receptor dimers 1 1 4 3 2 4 4 1 2 3 4 1 3 3 3 SRC JAK CBL SHC PLC p21-GDP CRK P13K VAV GRB7 SHP2 GAP GRB2 NCK Adaptors & enzymes SOS p21-GTP RAC Hidden layers AKT RAF PAK Cascades MEK JNKK ABL PKC BAD S6K MAPK JNK Transcription factors JUN SP1 MYC FOS ELK EGR1 STAT Output layer Growth Migration Apoptosis Adhesion Differentiation Yarden and Sliwkowski (2001) Nature Rev. Mol. Cell Biol, 2,

17 Mechanism-Based Target Identification HER3
Wallasch et al. and Ullrich EMBO J HRG-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3 Holbro et al. and Hynes PNAS 2003 The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation Htun van der Horst et al. and Ullrich IJC 2005 Anti-HER3 MAbs inhibit HER3-mediated signaling in breast cancer cell lines resistant to anti-HER2 antibodies

18 HER3 is a Determinant for Poor Prognosis in Melanoma and a Target for Therapeutic Intervention
Markus Reschke Daniela Mihic-Probst Edward Htun van der Horst Pjotr Knyazev Peter J. Wild Markus Hutterer Stefanie Meyer Reinhard Dummer Holger Moch Martin Treder (U3 Pharma) AMGEN

19 HER3 protein expression in primary melanoma and metastases

20 HER3 Expression Confers Poor Prognosis for Melanoma Patients
Kaplan-Meier Curve Multivariate Analysis HER3 p=0.044 (Hazard ratio: 2,636) Metastases p=0.000 (Hazard ratio: 22,251) Other variables sex age tumor thickness (p=0.065) HER3 low HER3 high Cumulative Survival p = 0.014 Overall Survival

21 Treatment with Human Anti-HER3 mAb Significantly Reduces pHER3 Levels in BxPC3 Tumor Xenografts
IgG1 (25 mpk per mouse) Anti-HER3 mAb pHER3 -Actin U3Pharma/AMGEN

22 Treatment with Human Anti-HER3 mAbs Results in Inhibition of BxPC-3 Pancreatic Carcinoma Xenografts
100 200 300 400 500 600 700 800 900 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 hIgG1 , 25 mg/kg 2X/wk Anti-HER3 mAb C , 25 mg/kg 2X/wk Anti-HER3 mAb A, 25 mg/kg 2X/wk Anti-HER3 mAb B, 25 mg/kg 2X/wk Gemcitabine, 80mg/kg weekly p< vs. hIgG1 Control Time (days) RMANOVA Analysis Blinded Study n=10 per group U3Pharma/AMGEN

23 Conclusion: HER3- Specific MAbs
Have an HER2-independent Inhibitory Effect in Melanoma and Pancreatic Cancer Cell Models May Be Valuable Therapeutic Agents Alone as Well as in Combination with Herceptin, Lapatinib and other Drugs

24 From PCR-Based Discovery of a Novel RTK to a Multi-Targeted Cancer Drug “Flk-1/VEGFR2 as Target in Anti-Angiogenesis Therapy” MPI for Biochemistry Munich MPI Biochemistry, Martinsried, Germany Birgit Millauer Werner Risau SUGEN Laura Shawver Jerry McMahon Annie Fong Development Team Collaborators Alex Levitzki, Hebrew University, Jerusalem György Kéri, Vichem, Budapest Pharmacia Inc. Pfizer Inc. SUGEN San Francisco

25 RTK Subclasses EGFR HER2/ neu HER2 HER4 I-R IGF-1R IRR PDGFRα PDGFRβ
CSF-1R KIT FLK2/FLT3 VEGFR1 VEGFR2 VEGFR3 FGFR-1 FGFR-2 FGFR-3 FGFR-4 CCK4 TRKA TRKB TRKC MET RON EPHA1- EPHA8 EPHB1- EPHB7 AXL MER TYRO3 TIE TEK RYK DDR-1 DDR-2 RET ROS LTK ALK ROR1 ROR2 MUSK MDK4 AATYK AATYK2 AATYK3

26 Terman et al. Biochem Biophys Res Commun 1992 Quinn et al. Proc Natl Acad Sci USA 1993 Millauer et al. Cell 1993

27

28 Flk-1/VEGFR2: Validation as Anti-Angiogenesis Drug Development Target
Receptor for VEGF Specifically Expressed in Endothelial Cells Essential for Tumor Angiogenesis DEVELOPMENT OF SELECTIVE FLK-1 KINASE SMALL MOLECULE INHIBITORS

29 Chemical Structure of SU5416 - An Inhibitor of VEGF Receptor Kinase
SU [2, 4-dimethylpyrrol-5-yl methylidenyl]-2-indolinone

30 SU5 416 Response in AIDS Kaposi’s Sarcoma
Protocol , Patient #003, R-P Before treatment with SU After treatment with SU5416

31 Patient 018/JZH: SU5416 Response Facial Lesions

32 SU5416 Highly Selective Efficacious in Mouse Models Anti - Metastatic
Sub – Optimal Pharmacological Properties Efficacious in Phase I Kaposi-Sarcoma Trial Colon Cancer Trial Terminated

33 Biochemical Effects of SU6668 a VEGFR-2, PDGFR, & FGFR RTK Inhibitor
Flk-1 PDGFRb FGFR-1 EGFR Ki Km (ATP) Ki Km (ATP) Ki Km (ATP) IC50 SU5416 SU6668 0.16 2.1 0.43 0.32 0.008 6.2 19.5 1.2 2.6 >100 As is shown in this table, SU6668 is very potent against PDGF receptor tyrosine kinase. SU6668 is more potent at inhibiting FGFR than SU5416 with only a slight loss in activity against Flk-1/KDR. Mean Ki and Km values are shown (mM) Both compounds exhibit competitive (with respect to ATP) inhibition Both compounds also inhibit ligand-dependent phosphorylation of c-Kit

34 SU11248 A Multitargeted Kinase Inhibitor
Receptor Ligand Tumor Expression PDGFR PDGF Glioma, HCC, NSCLC, OvCa, CaP, melanoma, CMML*, MDS* VEGFR VEGF CRC, OvCa, RCC, Melanoma, NSCLC, Sarcomas, Breast, NET KIT SCF GIST*, AML*, Melanoma, SCLC, Breast, OvCa, Cervix, Mastocytoma* FLT3 FLT3 Ligand AML*, MDS*, T-ALL, Neurological * Proliferation driven by mutant receptor

35 Anti-Angiogenic Activity
SU11248 Oral Multi-Targeted Receptor Tyrosine Kinase Inhibitor with Anti-Tumor and Anti-Angiogenic Activity

36 From Mono- to Multi-Targeted Kinase Inhibitors

37 Eric Raymond et al., 2002 NCI/EORTC/AACR
SU11248 Exhibits Cytoreductive Activity in Diverse Tumors of Patients in Phase I Clinical Trials Baseline Week 4 Patient with metastatic renal cell carcinoma Phase I trials ongoing at multiple international sites Patients heavily pre-treated, with progressive disease at entry Confirmed partial responses observed SU11248 is well tolerated most common toxicities seen in patients are fatigue, GI, and hematologic toxicity Eric Raymond et al., 2002 NCI/EORTC/AACR

38 Sunitinib in Metastatic RCC
Before Treatment After 4 weeks of Sunitinib Lung Lesion Response in RCC; Courtesy of Dr. Ronald Bukowski, Cleveland Clinic Foundation Sunitinib is New First-Line Therapy in Metastatic Clear Cell Renal Cell Carcinoma (RCC) Adverse Side Effects are Tolerable

39 FDA approves SUTENT for Treatment of Gleevec-Resistant GIST and RCC
SU 11248/SUTENT January 26, 2006 FDA approves SUTENT for Treatment of Gleevec-Resistant GIST and RCC July 19,2006 EMEA Approval for Europe

40 SUTENT History Flk-1 shown to be VEGF-R
(Millauer et al., Quinn et al.) Dominant negative VEGFR-2 inhibits tumor angiogenesis and-growth in vivo (Millauer et al.) SU5416 inhibits tumor growth in vivo (Fong et al.) SU11248 orally active multi-targeted drug (O‘Farrell et al.) SUTENT approval by FDA and EMEA (Pfizer)

41

42 and Metastasis Formation
Receptor-Tyrosine-Kinases Drivers of Cancer Progression Activated Receptor Ligand Binding Receptor- Tyrosine-Kinase Cell Membrane Y P Tyrosine Kinase Domain Signal Transduction Migration Proliferation Survival Tumor Growth and Metastasis Formation

43 Multi-Targeting = Blocking Multiple Tyrosine Kinases Simultaneously
Ligand Binding Activated Receptors Y P Y P Receptor Tyrosine Kinase Sunitinib Proliferation Survival Migration Tumor Growth and Metastasis Formation

44 Sunitinib

45 Sunitinib Tumor Angiogenesis

46 SUTENT/Sunitinib going forward….
Comprehensive Kinase Interaction Profile Cell Line-Characteristic Biological Responses Identification of Therapeutically Relevant Kinase Targets (Clinical Response Prediction Signature) Identification of Kinase Targets Responsible for Side Effects (Fatigue, Cardiotoxicity etc.) Resistance Formation

47 Molecular Targets in Cancer
Receptor Tyrosine Kinase RAS-GDP RAF-1 SHC BAD SOS GRB-2 14-3-3 Nucleus BCLXL Mitochondria SRC P STAT1+3 RAS-GTP SAPK AKT RAS-GAP DOK ? MYC PI3K MEK1/2 MAPK mTOR SU11248 (Pfizer) Zarnestra (JNJ) CT2584 (CTI) RAD001 (Novartis) SKI 606(Wyeth) BAY (Bayer) Imatinib (Novartis) BMS (Bristol-MS)

48 Future of Individualized Cancer Therapy
Diagnostic Data Traditional Pathological Parameter Tumor Gene Expression Analysis Oncogene Mutation Profile Tumor Markers Germline SNP Profile

49 Future of Individualized Cancer Therapy
Multi-Targeted Kinase Inhibitors (Gleevec, SUTENT, Nexavar….) Traditional Chemotherapy (Taxol, Anthracyclines…..) Target Specific Monoclonal Antibodies (Herceptin, HER3 Ab…..) Combinatorial Treatment Hormonal therapy Radiotherapy

50 Acknowledgements SUTENT Response Prediction Project
Michaela Bairlein Henrik Daub (MPI for Biochemistry) Cooperations: György Kéri (Vichem, Hungary) Singapore OncoGenome Project (Singapore) Matthias Mann (Dept. Proteomics, MPI for Biochemistry)

51 Acknowledgements Axl Project
Yixiang Zhang Pjotr Knyazev Yuri Cheburkin Yuri Knyazev Henrik Daub MPIB-DM Kirti Sharma MPIB-DM Vichem Chemie, Hungary György Kéri László Örfi Istvan Szabadkai

52 THANK YOU FOR YOUR ATTENTION

53 Michaela Bairlein et al. 2008
Proteomic Characterization of SUTENT/Sunitinib Maleate Activity on Cancer Cell Lines Michaela Bairlein et al. 2008

54 Target-Identification via Affinity Chromatography and Mass Spectrometry
modified SUTENT SUTENT provided by G. Kéri Coupling to ECH-Sepharose S1 S2 In-gel Trypsin digestion FPLC- affinity chromatography LC/MS (LTQ)-Orbitrap Coomassie Gel cell lysate Eluates 1-3 10 cancer cell lines of different tissue origin (3x breast, 1x pancreas, 1x prostate, 2x glioblastoma, 3x melanoma) - 2 affinity columns in series (0.3 & 3 mM ligand concentration) - elution: 1. specific: 1 mM free SUTENT; 10 mM ADP; 10 mM AMP-PNP 2. SDS (0,5%, RT) - tryptic ”in gel digestion”  LC/MS - qualitative data analysis in MASCOT  target- comparison between columns & cell lines

55 Targets bound to 0.3mM-column:
Kinase Affinity Spectrum in Cancer Cell Lines breast cancer cell lines  identified kinases 38 24 40 0.3mM column 3mM Hs578T (102 kinases in total) 36 23 56 MDA-MB-435S (115 kinases in total) 52 37 MDA-MB-231 (129 kinases in total) Targets bound to 0.3mM-column: e.g.: PDGFRa/b cKit VEGFR2 CSF-1R AuroraA AuroraB Ron Axl Ret Nek2 FAK Cdc2 RSK1/2

56 Receptor Tyrosine Kinases (RTKs)
SUTENT-Responsive Receptor Tyrosine Kinases (RTKs) = identified RTKs (0.3mM SUTENT column)

57 Summary SUTENT… … is a multi-targeted kinase-inhibitor with an interactome of >100 kinases … has an inhibitory effect on cancer cell proliferation … induces cancer cell apoptosis … interferes with cancer cell migration and invasiveness … inhibits autophosphorylation of several RTKs in cellular kinase assays

58 Gas/Axl System Hafizi S, et al.. Cytokine Growth Factor Rev. 2006, 17(4):

59 Gene Expression Analysis towards Target Identification AXL
Overexpression of the RTK Axl correlates with cancer cell line invasivity of breast cancer cell lines Basis for the development of an anti-metastasic cancer drug

60 Identification of AXL as a Gene Characteristic for Invasive Breast Cancer
Non-invasive normal

61 Discovery of Axl Tyrosine Kinase Inhibitors
Yixiang Zhang et al. 2008

62 Screening for Axl Tyrosine Kinase Inhibitors
Nested Chemical Library First compound library (216 compounds) (18 chemical families) Identify active chemical family Second compound library (99 compounds) (7 chemical families) Identify active compounds Third compound library (220 compounds) (106 compounds belong to Quinazoline family) Structure-activity relationship of compounds Cooperation with György Kéri (Vichem, Hungary)

63 Active Compounds Some compounds of quinoline, quinazoline, pyrimidines, quinoxaline and Indolin-2-ones families have inhibitory activities against auto-phosphorylation of AXL (IC50<10µM).

64 SKI-606 (Wyeth, clinical phase II)
Derivative of NA80x1 with Stronger Inhibitory Activity on Axl Phosphorylation, Migration and Invasion NA80x1 SKI-606 (Wyeth, clinical phase II)

65 Inhibitory Effects of SKI-606 on the Phosphorylation of Receptor Tyrosine Kinase AXL
Kinase assay IC50=0.56±0.08µM MDA-MB-435s cells Hs578T cells, IC50 = 0.34± 0.04µM

66 Cellular Specificity Profile of Compounds
VI17525 and VI17614 Potential targets: 32 kinases Src family members Abl family members Axl 8 more tyrosine kinases (FAK, 4 Eph family members) 9 STE group of kinases (6 MAP4K/STE20 kinase family members and 2 MAP2K family members Other kinases

67 Summary AXL: NA80x1 and SKI-606 are Submicromolar AXL Kinase Inhibitors They Inhibit More than 32 Other Tyr- and Ser/Thr Kinases SKI-606 is in Phase II Clinical Trials for CML and other Cancers (Wyeth) Starting Point for Medicinal Chemistry Towards a Tyrosine Kinase Inhibitor with an Even Better Target Inhibition Profile

68 Genentech Inc. CMM Singapore A*STAR MPI for Biochemistry Munich Biopolis

69 NA80x1 A 3-quinolinecarbonitrile Compound
with Strong Inhibitory Activity on Axl Phosphorylation, Cell Migration and Invasion

70 Inhibitory Effects of NA80x1 on the Phosphorylation of Receptor Tyrosine Kinase AXL
Kinase assay IC50= 12.67± 0.45µM MDA-MB-435s cells Hs578T cells, IC50=4,11± 1,47µM

71 Axl is a Promising Target for Invasive Breast Cancer Therapy
AXL is expressed in highly invasive breast cancer cells, but not in breast cancer cells of low invasivity Ectopic expression of AXL is sufficient to confer a highly invasive phenotype to weakly invasive MCF7 breast cancer cells Experimental inhibition of AXL signaling by dominant-negative mutant, Axl shRNA or Axl antibody decreases motility and invasivity of highly invasive breast cancer cells Overexpression of dominant-negative Axl suppresses brain tumor cell growth and invasivity, and prolongs survival in a mouse xenograft model Vajkoczy P, et al.. PNAS, 2006

72 Henrik Daub et al. KinaTor Technology Definition of Kinase Inhibitor Specificity
Affinity column enrichment factors in the order of 10‘000 signalling proteins < 2% of cellular proteome

73 RTK Axl : Relevance for Cancer
In 1991, first identified as Axl/Ufo/Ark Janssen et al – O’Bryan et al – Rescigno et al. 1991 Axl overexpression has been reported in several types of human cancers, including glioblastoma, colon, prostate, melanoma, thyroid, breast and lung carcinomas

74 Targeted Cancer Drug Development Kinase Inhibitors
So far: Identification of Potential Targets OncoGenomis, Oncoproteomics, Rational Pathway Analysis Validation in vitro / Model Systems Clinical Validation Development of Interfering Agent in vitro /whole cell screening Medicinal Chemistry Optimization Preclinical / Clinical Testing

75 Targeted Cancer Drug Development Kinase Inhibitors
New: Structurally Diverse Kinase Inhibitor Library HCS of Multiple Cancer Cell Lines Hit / Lead Kinase Inhibition Profile Medicinal Chemistry Preclinical / Clinical Testing


Download ppt "New Cancer Therapies Based on Thyrosine Kinase Inhibitors"

Similar presentations


Ads by Google