Presentation is loading. Please wait.

Presentation is loading. Please wait.

4.4 Transformations with Matrices

Similar presentations


Presentation on theme: "4.4 Transformations with Matrices"— Presentation transcript:

1 4.4 Transformations with Matrices
2. Reflections and Rotations

2 2) Reflections A reflection, or flip, is a transformation that creates symmetry.  You can use matrix multiplication to graph reflections in the coordinate plane. There are four reflection matrices you are responsible for knowing.

3 2) Reflections Reflection in the y-axis Reflection in the x-axis

4 2) Reflections Reflection in the line y = x Reflection in the line y = -x

5 2) Reflections Example 1:  Given triangle ABC with A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the y-axis. Then, sketch the image. A B C

6 2) Reflections Example 1:  Given triangle ABC with A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the y-axis. Then, sketch the image. A B C y-axis reflection matrix

7 2) Reflections Example 1:  Given triangle ABC with A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the y-axis. Then, sketch the image. A B C A’ B’ C’ y-axis reflection matrix

8 2) Reflections

9 2) Reflections Example 2: Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the x-axis. Then, sketch the image.

10 2) Reflections Example 2: Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the x-axis. Then, sketch the image. A B C

11 2) Reflections Example 2: Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the x-axis. Then, sketch the image. A B C x-axis reflection matrix

12 2) Reflections Example 2: Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), reflect the triangle across the x-axis. Then, sketch the image. A’ B’ C’ A B C x-axis reflection matrix

13 2) Reflections

14 2) Rotations A rotation is a transformation that turns a figure about a fixed point called a center of rotation.  You can rotate a figure as much as 360o.  In this text, all rotations are counterclockwise about the origin.

15 2) Rotations Rotation of 90o Rotation of 360o

16 2) Rotations Example 1:  Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), rotate the triangle 270°.  Then, sketch the image. 

17 2) Rotations Example 1:  Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), rotate the triangle 270°.  Then, sketch the image.  A B C

18 2) Rotations Example 1:  Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), rotate the triangle 270°.  Then, sketch the image.  A B C 270o rotation matrtix

19 2) Rotations Example 1:  Given triangle ABC where A (–4, 1), B (– 2, 5) and C (0, 2), rotate the triangle 270°.  Then, sketch the image.  A B C A’ B’ C’ 270o rotation matrtix

20 2) Rotations

21 2) Rotations Example 2:  The matrix below represents the vertices of a polygon. Write a matrix to represent the vertices after a rotation of 90o. A B C D

22 2) Rotations Example 2:  The matrix below represents the vertices of a polygon. Write a matrix to represent the vertices after a rotation of 90o. A B C D 90o rotation matrtix

23 2) Rotations Example 2:  The matrix below represents the vertices of a polygon. Write a matrix to represent the vertices after a rotation of 90o. A B C D A’ B’ C’ D’ 90o rotation matrtix

24 Homework Create some way to remember the 8 matrices used for reflections and rotations. You are responsible for knowing all 8. The matrices are located on p.193 and p.194 2) p.196 #10, 11, 13, 14, 18-21, 31, 32 3) QUIZ WEDNESDAY – section 4.4


Download ppt "4.4 Transformations with Matrices"

Similar presentations


Ads by Google