 # 5.6 – Graphing Inequalities in Two Variables. Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x +

## Presentation on theme: "5.6 – Graphing Inequalities in Two Variables. Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x +"— Presentation transcript:

5.6 – Graphing Inequalities in Two Variables

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12?

(x, y)

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (x, y)3x + 2y < 12

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (x, y)3x + 2y < 12True or False

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (x, y)3x + 2y < 12True or False (1,6)

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (x, y)3x + 2y < 12True or False (1,6)(1,6)3(1) + 2(6) < 12

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (x, y)3x + 2y < 12True or False (1,6)3(1) + 2(6) < 12False

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (x, y)3x + 2y < 12True or False (1,6)3(1) + 2(6) < 12False (3,0)3(3) + 2(0) < 12True (2,2)3(2) + 2(2) < 12True (4,3)3(4) + 2(3) < 12False

Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x + 2y < 12? (3,0) & (2,2) (x, y)3x + 2y < 12True or False (1,6)3(1) + 2(6) < 12False (3,0)3(3) + 2(0) < 12True (2,2)3(2) + 2(2) < 12True (4,3)3(4) + 2(3) < 12False

Ex. 2 Graph y > 3

1) Go to where y = 3

Ex. 2 Graph y > 3 1) Go to where y = 3

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1 2) Vertical

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1 2) Vertical, Solid

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1 2) Vertical, Solid

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1 2) Vertical, Solid 3) Shade inequality

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1 2) Vertical, Solid 3) Shade inequality

Ex. 2 Graph y > 3 1) Go to where y = 3 2) Horizontal, Dashed 3) Shade inequality Ex. 3 Graph x < -1 1) Go to where x = -1 2) Vertical, Solid 3) Shade inequality

Ex. 4 Graph y – 2x < -4

y – 2x < -4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4 LINE: Solid b/c includes “equal to”

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4 LINE: Solid b/c includes “equal to”

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4 LINE: Solid b/c includes “equal to” SHADE: Since < shade below the line.

Ex. 4 Graph y – 2x < -4 y – 2x < -4 +2x +2x y < 2x – 4 GRAPH: y = 2x – 4 m = 2, b = -4 LINE: Solid b/c includes “equal to” SHADE: Since < shade below the line.

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets.

Let y = # of child tickets.

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets. Let y = # of child tickets.

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets. Let y = # of child tickets. Total number of people cannot exceed 250.

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets. Let y = # of child tickets. Total number of people cannot exceed 250. So,x + y

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets. Let y = # of child tickets. Total number of people cannot exceed 250. So,x + y < 250

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets. Let y = # of child tickets. Total number of people cannot exceed 250. So,x + y < 250 OR

Ex. 5 Suppose a theatre can seat a maximum of 250 people. Write an inequality to represent the number of adult and childrens tickets that can be sold.Let x = # of adult tickets. Let y = # of child tickets. Total number of people cannot exceed 250. So,x + y < 250

Download ppt "5.6 – Graphing Inequalities in Two Variables. Ex. 1 From the set {(1,6),(3,0),(2,2),(4,3)}, which ordered pairs are part of the solution set for 3x +"

Similar presentations