Presentation is loading. Please wait.

Presentation is loading. Please wait.

EET103 TEKNOLOGI ELEKTRIK

Similar presentations


Presentation on theme: "EET103 TEKNOLOGI ELEKTRIK"— Presentation transcript:

1 EET103 TEKNOLOGI ELEKTRIK
SISTEM SATU FASA EET103 TEKNOLOGI ELEKTRIK

2 SISTEM SATU FASA Pengenalan dan ciri-ciri sistem satu fasa
Kebaikan dan keburukan sistem satu fasa Pengiraan voltan, arus dan kuasa

3 PENGENALAN DAN CIRI-CIRI SISTEM SATU FASA
ALTERNATING CURRENT: a current or voltage varies periodically in magnitude and direction

4 PERBEZAAN AC DAN DC Difference between DC and AC:
DC: a direct flow of electrons through a conductor such as a metal wire. A battery or DC generator usually provides a source of electrons and the potential or voltage between the positive (+) and negative (-) terminals.

5 AC (Alternating Current): a back-and-forth movement of electrons in a wire. When the force of a negative (-) charge is at one end of a wire and a positive (+) potential is at the other end, the electrons in the wire will move away from the (-) charge, just like in DC electricity. But if the charges at the ends of the wires are suddenly switched, the electrons will reverse their direction.

6

7 AC voltage (1 cycle):

8 Mathematics of AC voltages
An AC voltage v(t) can be described mathematically as a function of time by the following equation: where A is the amplitude in volts (also called the peak voltage), ω is the angular frequency in radians per second t is the time in seconds

9 Since angular frequency is of more interest to mathematicians than to engineers, this is commonly rewritten as: Where f is the frequency in hertz (Hz).

10 AC voltage:

11 Amplitude is the maximum voltage reached by the signal
Amplitude is the maximum voltage reached by the signal. It is measured in volts, V. Peak voltage (Vp) is another name for amplitude. Peak-peak voltage (Vp-p) is twice the peak voltage (amplitude). When reading an oscilloscope trace it is usual to measure peak-peak voltage.

12 RMS (effective) value:
The root-mean-square (RMS) value of an alternating current is the steady direct current which converts electrical energy to other forms of energy in a given resistance at the same rate as the alternating current (AC). In power distribution work the AC voltage is nearly always given in as a root-mean-square (rms) value, written Vrms. For a sinusoidal voltage:

13 Vrms = 0.707 × Vpeak   and   Vpeak = 1.414 × Vrms

14 Frequency The number of complete cycles of alternating current or voltage completed each second Frequency is always measured and expressed in hertz (Hz).

15 Period An individual cycle of any sine wave represents a definite amount of TIME. The time required to complete one cycle of a waveform is called the PERIOD of the wave. The relationship between Period (T) in seconds and frequency (f) in Hz:

16

17 Frequency measurement:

18 Wavelength The time it takes for a sine wave to complete one cycle is defined as the period of the waveform. The distance traveled by the sine wave during this period is referred to as WAVELENGTH.

19

20 Wavelength measurement:

21 Alternating current values:
PEAK AND PEAK-TO-PEAK VALUES:

22

23 Contoh (1) Rajah berikut menunjukkan satu kitar gelombang arus sinus. Berikan persamaan bagi arus tersebut sebagai fungsi masa. t (ms) i (mA) 170 -170 20 10

24 Penyelesaian: Persamaan umum bagi gelombang sinus ialah i(t) = Im sint Dari rajah gelombang diketahui; Im = 170 mA dan T = 20 ms = 0.02 s

25 Maka, frekuensi dapat dikira seperti berikut: f = 1/T = 1/0.02 = 50 Hz
Seterusnya persamaan arus menjadi, i(t) = Imsint = 170 sin(2ft) = 170 sin(100t) mA

26 Contoh (2) Satu voltan ulang-alik bentuk sin mempunyai frekuensi 2500 Hz dan nilai puncak 15 V. Lukiskan bentuk satu kitar gelombang voltan tersebut.

27 Penyelesaian Dari soalan, diketahui nilai-nilai berikut:
Vm = 15 V dan T = 0.4 ms Rajah umum gelombang sinus adalah seperti berikut: t (ms) v (V) 15 -15 0.4 0.2

28 Contoh (3) Satu voltan ulang-alik sinus diberikan oleh persamaan:
v(t) = 156kos(800t) V Lukiskan rajah satu kitar gelombang voltan tersebut.

29 Penyelesaian: Diberi, v(t) = Vm kos(t) = 156 kos(800t) volt
Maka, nilai puncak voltan, Vm = 156  = 2f = 800 f = 400 Tempoh bagi gelombang ini ialah; T = 1/f = 1/400 = 2.5 ms

30 Gambarajah gelombang voltan:
v (V) 156 -156 0.625 1.25 2.5 t (ms) 1.875

31 INSTANTANEOUS VALUE The INSTANTANEOUS value of an alternating voltage or current is the value of voltage or current at one particular instant There are actually an infinite number of instantaneous values between zero and the peak value.

32 AVERAGE VALUE The AVERAGE value of an alternating current or voltage is the average of ALL the INSTANTANEOUS values during ONE alternation.

33 Effective and average value

34 Phase angle (sudut fasa):
Apabila sesuatu gelombang sinus tidak melepasi nilai kosong pada t=0, maka persamaan gelombang tersebut mempunyai sudut fasa yang perlu dipertimbangkan. Sudut fasa menunjukkan ANJAKAN sesuatu gelombang dari sifar. Gelombang sinus boleh bermula dari apa-apa nilai seperti berikut. Ia tidak semestinya bermula dari sifar (atau dari nilai puncak bagi fungsi kos).

35 Persamaan gelombang berikut: ao adalah sudut fasa (phase angle)
y = Ymsin(x + a) ao adalah sudut fasa (phase angle) x () 90 180 270 360 Ym -Ym a

36 Sine Waves In Phase (sefasa)
When two sine waves are precisely in step with one another, they are said to be IN PHASE. To be in phase, the two sine waves must go through their maximum and minimum points at the same time and in the same direction.

37 Voltage and current are in phase

38 Sine Waves Out Of Phase (tidak sefasa)
Voltage wave E1 which is considered to start at 0° (time one). As voltage wave E1 reaches its positive peak, voltage wave E2 starts its rise (time two). Since these voltage waves do not go through their maximum and minimum points at the same instant of time, a PHASE DIFFERENCE exists between the two waves. The two waves are said to be OUT OF PHASE.

39 Phase difference is 90o

40 GELOMBANG TIDAK SEFASA
Dua gelombang sinus yang tidak sefasa boleh diwakilkan dengan persamaan: v(t) = Vm kost ; i(t) = Im kos(t + ) Arus i(t) MENDAHULU (leading) voltan v(t) dengan sudut . Dalam sebutan masa, arus mendahului voltan dengan tempoh (T/360) saat. Boleh juga disebut voltan MENGEKOR (lagging) arus dengan sudut 

41 Dua Gelombang Tidak Sefasa:
Θ is phase difference v, i Vm Im -Vm -Im Gelombang V mencapai nilai puncak di t2 t T Gelombang i mencapai nilai puncak di t1 v i

42 CONTOH (4) Lukiskan satu kitar gelombang arus sinus yang diberikan oleh persamaan i(t) = 70sin(8000t rad) mA. Tandakan nilai-nilai kritikal.

43 PENYELESAIAN Bentuk am gelombang arus ialah: i(t) = Im sin(t + )
= 70 sin(8000t rad) Dari persamaan diatas, nilai-nilai kritikal ialah: Im = 70;  = 2f = 8000;

44 f = 4000 Hz = 4 kHz; Maka, T = 1/f = 1/4000 = 0.25 ms; Dan,  = rad = 54

45 Rajah gelombang sinus bagi arus:
i (mA) t (ms) 70 -70 57 54 0.25 0.125

46 SISTEM SATU FASA Pengenalan dan ciri-ciri sistem satu fasa
Kebaikan dan keburukan sistem satu fasa Pengiraan voltan, arus dan kuasa

47 KEBAIKAN DAN KEBURUKAN SISTEM SATU FASA
Direct current has several disadvantages compared to alternating current. Direct current must be generated at the voltage level required by the load. Alternating current, however, can be generated at a high level and stepped down at the consumer end (through the use of a transformer) to whatever voltage level is required by the load.

48 The major advantage that AC electricity has over DC is that AC voltages can be transformed to higher or lower voltages. This means that the high voltages used to send electricity over great distances from the power station could be reduced to a safer voltage for use in the house. This is done by the use of a transformer. This device uses properties of AC electromagnets to change the voltages. It is easy to convert AC to DC but expensive to convert DC to AC.

49 SISTEM SATU FASA Pengenalan dan ciri-ciri sistem satu fasa
Kebaikan dan keburukan sistem satu fasa Pengiraan voltan, arus dan kuasa

50 Z= Z  1. POLAR FORM Z :magnitude of Z  : angle of Z
COMPLEX NUMBER 1. POLAR FORM Z= Z  Z :magnitude of Z  : angle of Z

51 Z = R + jX 2. RECTANGULAR FORM R: real value of Z
X: imaginary value of Z j : operator valued √-1

52 3. EXPONENTIAL FORM Z = rej r : magnitude : angle

53 RECTANGULAR FORM TO POLAR FORM

54 POLAR FORM TO RECTANGULAR FORM

55 COMPLEX NUMBER ALGEBRA OPERATION
To ADD two number: Transform to Rectangular To MULTIPLY two number: Transform to Polar To SUBTRACT two number:

56 SINUSOID-PHASOR TRANSFORMATION
Time domain representation Frequency domain representation

57 Ohm’s Law in AC circuit

58 RESISTOR IN AC IN FREQUENCY DOMAIN:

59 V and I waveform for resistor :
v, i v i t IN PHASE NO PHASE DIFFERENCE BETWEEN VOLTAGE AND CURRENT

60 INDUCTOR IN TIME DOMAIN: IN FREQUENCY DOMAIN:

61 GELOMBANG LITAR L ARUS MENGEKOR VOLTAN (ELI) v, i v i t 90º
BEZA FASA SEBANYAK 90º = (1/4)T = 1/4f

62 KAPASITOR IN TIME DOMAIN: IN FREQUENCY DOMAIN:

63 GELOMBANG LITAR C v i t v, i Arus mendulu voltan sebanyak 90° (ICE)

64 GELOMBANG v-i BAGI R,L,C v, i v i t v, i v i t v, i v i t 90º
V,I SEFASA v, i v i t 90º I MENGEKOR V SBYK 90º v i t v, i I MENDAHULU V SBYK 90º

65 Penentuan Mendulu/Mengekor

66 ARUS MENGEKOR VOLTAN Jika gelombang voltan mpy sudut fasa positif
Dengan menganggap gelombang Arus sbg RUJUKAN: Jika gelombang voltan mpy sudut fasa positif Terletak disebelah kiri gelombang arus Gelombang voltan mendulu gelombang arus.

67 ARUS MENDULU VOLTAN Jika gelombang voltan mpy sudut fasa negatif
Terletak disebelah kanan gelombang arus gelombang voltan mengekor gelombang arus.

68 REACTANCE AND IMPEDANCE
AC CIRCUIT ELEMENT REACTANCE AND IMPEDANCE

69 REACTANCE All elements in AC circuit (resistor, inductor and capacitor) should have same unit before you do the analysis.

70 Inductor value (in henry) and capasitor value (in farad) must be transform into ohms ().
Inductance and capacitance value in ohms are known as reactance which is inductive reactance for inductor, and capacitive reactance for capacitor.

71 Formula to get XL dan Xc:
Symbol for inductive reactance is XL and for capacitive reactance is Xc.. Formula to get XL dan Xc: HAFAL!

72 CAPACITOR Series capacitors: Parallel capacitors:

73 INDUCTOR Series inductors: Parallel inductors:

74 IMPEDANCE Impedance is a element connecting the resistance, inductive reactance and capacitive reactance in time domain.

75 Impedance is represent by Z symbol:
(ohms)  is angle between voltage and current Impedance is complex number because of magnitude and angle

76 Resistance impedance, ZR:

77 Inductive impedance, ZL

78 Capacitive impedance, Zc

79 KIRCHHOFF LAW IN AC ANALYSIS
Transform circuit into frequency domain using these equation. Use KVL and KCL…

80 R-L CIRCUIT IN FREQUENCY DOMAIN
+ VL - R jL V = Vm + VR - I

81 CONTOH (1) : LITAR RL Given Vs = 40 cos (2000t - 60º). Find,
Phasor voltage across R; Phasor voltage across L; Current, i(t) expression

82 Step 1: Circuit in frequency domain
V s = 40 Ð -60 R=1000 j w L j1570.8 + V R - +

83 Step 2: Find circuit impedance

84 Step 3: Calculate current

85 Phasor current is;

86 (a) Phasor voltage across R,

87 (b) Phasor voltage across L,

88 Current, i(t) expression:
»» Transform I in time domain

89 CONTOH (2) : LITAR RC Given VC = 60 cos(1000t - 33º). Find,
Phasor current, I Phasor voltage across R Voltage source, vs(t).

90 Step 1: Circuit in frequency domain

91 Step 2: Circuit impedance (Z)

92 Step 3: Find I, VR,VS (a) Phasor current; (b) Phasor voltage across R;

93 (c) Source phasor voltage;
Transform V into time domain;

94 IMPEDANCE TRIANGLE

95 IMPEDANCE TRIANGLE We also can get impedance by using impedance triangle: Galangan,Z  Reaktan, X Perintang, R

96 Dari segitiga galangan;
Ini bermakna, dengan mengetahui Galangan (Z), kita boleh juga mengetahui nilai perintang (R) dan Reaktan (X).

97 HUBUNGAN Z, R DAN X Hubungan Z dan R; Hubungan Z dan X;

98 AC Power Calculation

99 POWER IN AC CIRCUIT

100 INSTANTENAOUS POWER (KUASA SEKETIKA)
Kuasa seketika yg diserap oleh setiap peranti elektrik adalah hasil darab Voltan seketika yg merintanginya dan Arus seketika yang melaluinya.

101 Dimana, Vm dan Im adalah Nilai Puncak (peak) bagi voltan dan arus.
RMS VALUE Semua nilai Voltan dan Arus dalam pengiraan kuasa adalah menggunakan nilai RMS (root mean square). Iaitu: Dimana, Vm dan Im adalah Nilai Puncak (peak) bagi voltan dan arus.

102 Kuasa purata atau kuasa sebenar ditakrifkan sebagai:
1. AVERAGE POWER (KUASA PURATA) Kuasa purata atau kuasa sebenar ditakrifkan sebagai: Unit bagi kuasa purata ialah Watt.

103 Kuasa purata pada Perintang boleh juga diwakili oleh persamaan berikut:
Kita tahu V=IR, maka kuasa purata turut diwakili oleh:

104 Kuasa purata ialah kuasa berguna yg. disebabkan oleh elemen Perintang.
Dengan itu, kuasa purata bagi beban reaktif (L atau C) adalah Kosong.  ialah Sudut antara Voltan dan Arus, ATAU dikenali juga sebagai Sudut Galangan,Z.

105 Nilai  diperolehi seperti berikut:

106 CONTOH (1) Voltan sinus mempunyai amplitud maksimum 625 Volt dikenakan pada terminal yg mempunyai Perintang 50. Dapatkan kuasa purata yang dihantar kepada perintang tersebut.

107 PENYELESAIAN Nilai rms: Kuasa purata bagi perintang diperolehi:

108 Kuasa Reaktif ditakrifkan sebagai:
2. REACTIVE POWER (KUASA REAKTIF) Kuasa Reaktif ditakrifkan sebagai:

109 Kuasa reaktif juga merupakan kuasa yg disimpan oleh elemen reaktif iaitu L atau C.
Maka, kuasa reaktif boleh juga dicari dengan:

110 CONTOH (2) Diberi v= 100 kos (t + 15º) dan i= 4 sin (t - 15º),
Pada terminal rangkaian, dapatkan: Kuasa purata Kuasa reaktif i + v - Rangkaian

111 PENYELESAIAN Tukarkan persamaan arus, i dalam bentuk kos: i= 4 kos (t - 105º) Dari persamaan Kuasa Purata: Maka,

112 Dari pers. Kuasa reaktif:
Maka,

113 Nilai kuasa purata, P= -100 W:
Bermaksud kuasa purata telah dihantar balik dari beban kepada terminal bekalan. Nilai kuasa reaktif, Q= Var: Bermaksud kuasa reaktif telah diserap oleh beban.

114 AC POWER FORMULA AC power calculation can be done by using these formula:


Download ppt "EET103 TEKNOLOGI ELEKTRIK"

Similar presentations


Ads by Google