Download presentation

Presentation is loading. Please wait.

Published byAleesha Paul Modified over 6 years ago

1
Unit 3 Practice Test Review

2
Page 9 (back) 5) List all possible rational zeros of this polynomial: 5x 4 – 31x 3 + 11x 2 – 31x + 6 p 1, 2, 3, 6 q 1, 5 p 1, 2, 3, 6, 1/5, 2/5, 3/5, 6/5 q

3
Page 9 (front) 4) List all possible rational zeros of this polynomial: -2x 3 + 5x 2 + 6x + 18 p 1, 2, 3, 6, 9, 18 q 1, 2 p 1, 2, 3, 6, 9, 18, 1/2, 3/2,9/2 q

4
Page 9 back 2) Determine if the binomial is a factor of the polynomial P(x) = x 3 + 5x 2 +7x + 9; x + 1 -1 1 5 7 9 -1 - 4 - 3 1 4 3 6 No when synthetically dividing with -1, the remainder is 6 not 0; so x + 1 is not a factor.

5
Page 9 (back) 4) x 3 + x 2 – x + 15 = 0; is 1 – 2i is a zero? 1 – 2i| 1 1 -1 15 1 – 2i 1 2 – 2i (1 – 2i )(2 – 2i ) 2 – 2i – 4i + 4i 2 -2 – 6i 1 – 2i| 1 1 -1 15 1 – 2i -2 – 6i -15 1 2 – 2i -3 – 6i 0 Yes, when synthetically dividing with 1 – 2i, the remainder is zero; so 1 – 2i is a zero.

6
Page 9 (back) 9) If -1/3 is a zero of h(x) = 3x 3 – 2x 2 – 61x – 20, find the other zeros. 3x 3 – 2x 2 – 61x – 20 -1/3 | 3 -2 -61 -20 -1 1 20 3 -3 -60 0 3x 2 – 3x – 60 = 0 3(x 2 – x – 20) = 0 3(x – 5)(x + 4) x = 5, -4

7
Page 9 (front) 9) x 4 + 2x 3 – 4x –4; -1 + i is a zero -1 + i| 1 2 0 -4 -4 -1 + i 1 1 +i (-1 + i )(1 + i ) -1 – i + i + i 2 -2 -1 + i| 1 2 0 -4 -4 -1 + i -2 2 – 2i 4 1 1 +I -2 -2 – 2i 0 (-1 + i )(-2 – 2i) -2 + 2 i - 2 i - 2 i 2 -1 - i| 1 1 + i -2 -2 – 2i 0 -1 – i 0 2 + i 1 0 -2 0 x 2 – 2 = 0 x = ± 2

8
Page 9 (front) 7) Find all zeros x 4 – x 3 – 10x 2 + 4x + 24 -2 | 1 -1 -10 4 24 ↓ -2 6 8 -24 1 -3 -4 12 0 x 3 – 3 x 2 – 4x + 12 = 0 x 2 ( x – 3 ) – 4 (x – 3 ) ( x – 3 ) (x 2 – 4 ) (x – 3 ) ( x – 2 ) ( x + 2) y x 5 5 -5

9
Page 9 (back) Find all zeros 5x 4 – 31x 3 + 11x 2 – 31x + 6 6 5 -31 11 -31 6 30 -6 30 -6 1/5 5 -1 5 -1 0 1 0 1 5 0 5 0 5x 2 + 5 = 0 5(x 2 + 1) = 0 x 2 = -1 x = ± i x = 6, 1/5, ± i 5(x + i)(x – i)(x – 6)(x – 1/5)

10
Page 9 (front) 8) Find all zeros 18x 3 + 3x 2 – 7x – 2 p 1, 2 q 1, 2, 3, 6, 9, 18 p 1, 2, ½, 1/3, 2/3, 1/6, q 1/9, 2/9, 1/18 18x 3 + 3x 2 – 7x – 2 -½ | 18 3 -7 -2 ↓ -9 3 2 18 -6 -4 0 18x 2 – 6x – 4 = 0 2(9x 2 – 3x – 2) = 0 2(3x + 1)(3x – 2) x = -1/2, -1/3, 2/3 2(3x + 1)(3x – 2)(x + ½)

Similar presentations

© 2022 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google