 # If b2 = a, then b is a square root of a.

## Presentation on theme: "If b2 = a, then b is a square root of a."— Presentation transcript:

If b2 = a, then b is a square root of a.
9.1 Square Roots SQUARE ROOT OF A NUMBER If b2 = a, then b is a square root of a. Examples: 32 = 9, so 3 is a square root of 9. (-3)2 = 9, so -3 is a square root of 9.

Evaluate the expression. - 𝟒
Chapter 9 Test Review Evaluate the expression. - 𝟒

Evaluate the expression. 𝟏𝟒𝟒
Chapter 9 Test Review Evaluate the expression. 𝟏𝟒𝟒

Evaluate the expression. 𝟏𝟎𝟎
Chapter 9 Test Review Evaluate the expression. 𝟏𝟎𝟎

Evaluate the expression. - 𝟐𝟓
Chapter 9 Test Review Evaluate the expression. - 𝟐𝟓

9.2 Solving Quadratic Equations by Finding Square Roots
When b = 0, this equation becomes ax2 + c = 0. One way to solve a quadratic equation of the form ax2 + c = 0 is to isolate the x2 on one side of the equation. Then find the square root(s) of each side.

Chapter 9 Test Review Solve the equation. x2 = 144

Chapter 9 Test Review Solve the equation. 8x2 = 968

Chapter 9 Test Review Solve the equation. 5x2 – 80 = 0

Chapter 9 Test Review Solve the equation. 3x2 – 4 = 8

9.3 Simplifying Radicals PRODUCT PROPERTY OF RADICALS ab = a ∙ b
EXAMPLE: = 4∙5 = ∙ 5 = 2 5

Simplify the expression. 𝟒𝟓
Chapter 9 Test Review Simplify the expression. 𝟒𝟓

Simplify the expression. 𝟐𝟖
Chapter 9 Test Review Simplify the expression. 𝟐𝟖

Simplify the expression. 36 24
Chapter 9 Test Review Simplify the expression. 36 24

Simplify the expression. 8 6
Chapter 9 Test Review Simplify the expression. 8 6

9.5 Solving Quadratic Equations by Graphing
The x-intercepts of graph y = ax2 + bx + c are the solutions of the related equations ax2 + bx + c = 0. Recall that an x-intercept is the x-coordinate of a point where a graph crosses the x-axis. At this point, y = 0.

Chapter 9 Test Review Use a graph to estimate the solutions of the equation. Check your solutions algebraically. x2 – 3x = -2

Chapter 9 Test Review Use a graph to estimate the solutions of the equation. Check your solutions algebraically. -x2 + 6x = 5

Chapter 9 Test Review Use a graph to estimate the solutions of the equation. Check your solutions algebraically. x2 – 2x = 3

The solutions of the quadratic equation ax2 + bx + c = 0 are: x = −𝑏 ± 𝑏 2 −4𝑎𝑐 2𝑎 when a ≠ 0 and b2 – 4ac > 0.

Use the quadratic formula to solve the equation. 3x2 – 4x + 1 = 0
Chapter 9 Test Review Use the quadratic formula to solve the equation. 3x2 – 4x + 1 = 0

Use the quadratic formula to solve the equation. -2x2 + x + 6 = 0
Chapter 9 Test Review Use the quadratic formula to solve the equation. -2x2 + x + 6 = 0

Use the quadratic formula to solve the equation. 10x2 – 11x + 3 = 0
Chapter 9 Test Review Use the quadratic formula to solve the equation. 10x2 – 11x + 3 = 0

9.7 Using the Discriminant
In the quadratic formula, the expression inside the radical is the DISCRIMINANT. x = −𝑏 ± 𝑏 2 −4𝑎𝑐 2𝑎 DISCRIMINANT 𝐛 𝟐 - 4ac

Chapter 9 Test Review Find the value of the discriminant. Then determine whether the equation has two solutions, one solution, or no real solution. 3x2 – 12x + 12 =0

Chapter 9 Test Review Find the value of the discriminant. Then determine whether the equation has two solutions, one solution, or no real solution. 2x2 + 10x + 6 =0

Chapter 9 Test Review Find the value of the discriminant. Then determine whether the equation has two solutions, one solution, or no real solution. -x2 + 3x - 5 =0

Download ppt "If b2 = a, then b is a square root of a."

Similar presentations