Presentation is loading. Please wait.

Presentation is loading. Please wait.

FLOW INSTRUMENTATION 101 Your Logo Here Dave Schmitt Escondido / Irvine “Serving the Southwest’s Instrumentation Needs Since 1987 ” Dave Schmitt Escondido.

Similar presentations


Presentation on theme: "FLOW INSTRUMENTATION 101 Your Logo Here Dave Schmitt Escondido / Irvine “Serving the Southwest’s Instrumentation Needs Since 1987 ” Dave Schmitt Escondido."— Presentation transcript:

1 FLOW INSTRUMENTATION 101 Your Logo Here Dave Schmitt Escondido / Irvine “Serving the Southwest’s Instrumentation Needs Since 1987 ” Dave Schmitt Escondido / Irvine “Serving the Southwest’s Instrumentation Needs Since 1987 ”

2 Overview – S.C. CONTROLS, INC. Rep / Distributor / Integrator Escondido / Irvine offices Founded in 1987 Specializing in FLOW, LEVEL, TEMPERATURE, DENSITY MEASUREMENTS Degreed Engineers Offering solutions not just sales

3 Overview Briefly describe the theory of flow measurements Outline different types of flow meters. Discuss advantages/ disadvantages in applications. Present examples of instruments for measurement solutions Questions / Answers

4 Flow Measurement Theory WHAT IS FLOW ?? –Measure of the velocity of a fluid per unit area in a closed conduit; ie: pipe or duct –FLOW = VELOCITY (fluid) X Area of Pipe or Duct or Stack –FLOW = FPM X FT2 or IN2 –Q = AV (Area X velocity) –Q = ρ AV (density x area x vel) Mass flow

5 FLOW - In our everyday lives Water flow meter at our home or apartment –used for billing purposes –Mechanical flow meter with local rate and total –Relative accuracy

6 FLOW - In our everyday lives Gas Flow Meter - natural gas measurement of gas used for cooking and heating –Mechanical Meter - turbine type Liquid flow meter - Gasoline - at the local gas station where we pumped gas this morning –Positive displacement type with output signal to electronic counter for billing We use flow meters every day to measure fluids we use.

7 7 Why meter? Business Need Mitigate rising energy costs Manage energy consumption efficiently Apportion energy costs by usage and not square footage, creating behavior change You cannot control what you do not measure.

8 8 Volumetric Flow Mass Flow Density - Liquid Density - Steam Actual vs. Standard Flow - Gas Energy Flow - Water Flow Profiles & Reynolds Number Viscosity Accuracy Repeatability Straight Run Requirements Meter Installation Basic Flow Theory

9 9 Volumetric Flow (all fluids) Q = A V = ft = ft sec * * ² ft sec ³ where: Q = volumetric flow A = cross sectional area ( ft ) V = average fluid velocity ( ) ft sec ft sec ³ ²

10 10 Mass Flow where: m = mass flow ( )  = density ( ) Q = average fluid velocity ( ) A = cross sectional area ( ft ) V = average fluid velocity ( )  lbs sec ² ft sec ft sec m = Q  = A V  = ft =  * * * ² ft sec * * lbs ft ³ lbs sec lbs ft ³

11 11 Density - Liquids Liquids The density of a liquid is inversely proportional to temperature:    1 T 8.2877100 8.303790 8.317680 8.32970 8.337860 8.34350 8.345140 8.343632 Weight Density Lbs/gal Temperature °F WATER

12 12 Density - Gases where:  = Density ( ) = absolute pressure (psia) = 14.7 + Pgage SG =Specific Gravity = absolute temperature = F° + 460 = ° Rankin lbsft 3 T a  a  = 2.7   SG T a Density of Gas:  a Gases  = 1 T The density of a gas varies proportionally with pressure and inversely with temperature:  a

13 13 Density - Steam 3.7406001541.00 3.1005801324.30 2.5805601131.80 2.150540361.50 1.780520811.40 1.480500680.00.820440381.20 0.536400247.10 0.338360152.92 0.20332089.6 Density lbs/ft ³ Temperature °F Pressure psia Saturated Steam Table 0.14350080 0.15344080 0.16140080 0.17036080 0.18132080 0.03550020 0.03844020 0.03940020 0.04136020 0.04432020 Density lbs/ft ³ Temperature °F Pressure psia Superheated Steam Table Superheated steam:Saturated steam:

14 14 Actual vs. Standard Flow - Gas Standard Volume Flow: Gas flow in standard units relates the volume flow of gas to the same amount of mass flow of gas at standard conditions: where: Q = Q standardactual  operating  standard conditions = specific gravity (, at standard conditions ) = density of gas at operating pressure and temperature = density of gas at standard conditions (at 14.7 psia, 60°F) = standard time or standard time ³ ft unit Q standard Q actual  operating  standard = actual volumetric flow (ACFM, ACFH, etc…)  gas  air ³ m unit SG Actual Volume Flow: Q = V A (actual,, etc) (actual,hr,, etc) * ³ ft sec ³ m ³ ft min ³ m sec

15 15 Energy Flow Chilled/hot water energy (Btu) calculations require (1) flow and (2) temperature inputs. Btu is defined as the amount of energy required to raise the temperature of 1lb water at 39°F by 1°F.   where: E = energy flow ( ) m = mass flow ( ) A = cross sectional area ( ft² ) V = average fluid velocity ( )  = density ( ) h = Btu’s (heat content) of water at supply temperature ( ) h = Btu’s (heat content) of water at return temperature ( )   Btu sec lbs sec ft sec Btu lbs ³ ft Btu lbs s r ft³ ft sec E = m (h – h ) E = A V  (h - h ) E = ft² E = sr rs    Btu lbs Btu sec    

16 16 Flow Profiles & Reynolds Number Re = Re = inertial forces frictional forces density velocity diameter viscosity    V D µ  

17 17 Viscosity Dynamic viscosity cP (centipoise) Kinematic Viscosity cst (centistoke)  A measure of how freely a fluid flows: where: V = kinematic viscosity V = dynamic viscosity SG = specific gravity cP cst V = V cst SG cP *

18 18 Viscosity Viscosity can be highly temperature dependent in liquids. Steam/gas – 0.01 cP Water – 1.0 cP Honey – 300 cP

19 19 Accuracy % of Rate or Reading Error = % of rate  measurement % of Full Scale Error = % of full scale  full scale flow ACCURACY +/-1% % of Rate Max flow 1,000lb/h = 1,010 to 990 lb/h Min flow 100 lb/h = 101 to 99 lb/h % Full scale (FS) Max flow 1,000 lb/h = 1,010 to 990 lb/h Min flow 100 lb/h = 110 (100 + 10) lb/h to 90 (100 - 10) lb/h i.e. +/- 10% error at minimum flow

20 20 Repeatability Not accurate, but repeatable Not accurate, or repeatable Accurate & Repeatable Repeatability: Differs from Accuracy Measures the same all the time

21 21 Installation – Straight Run  Straight run requirements  Minimum 10 pipe diameters upstream and 5 pipe diameters downstream required to get proper flow profile  Less straight run affects meter accuracy

22 22 Installation – Meter Location Top View Install before valve to avoid air Vertical orientation– insure full pipe Liquid horizontal orientation– insure full pipe Gas & steam horizontal orientation – insure no condensate

23 23 Technologies TechnologyOperating Principle AdvantagesDisadvantagesFluids Measured DP (Differential Pressure) Orifice plate Pitot tube Variable area Venturi V-Cone Accelabar An obstruction in the flow, measure pressure differential before and after the obstruction  Low initial cost  No moving parts  Handle dirty media  Easy to use  Well understood technology  Supported by AGA and API  Not highly accurate, particularly in gas flow  Orifice plate and pitot tube can become clogged  High maintenance to maintain accuracy  Typically low turndown  Pressure drop Liquids Gases Steam Vortex Inline Insertion Bluff body creates alternating vortices, vortex shedding frequency equal to fluid velocity  High accuracy  No moving parts  No maintenance  Measures dirty fluids  Can be affected by pipe vibration  Cannot measure low flows Liquids Gases Steam Turbine Inline Insertion Dual turbine Turbine rotates as fluid passes by, fluid velocity equal to blade rotational frequency  High accuracy  Low flow rates  Good for steam  Wide turndown  Moving parts require higher maintenance  Clean fluids only Liquids Gases Steam Magnetic Mag Electromagnetic Measures voltage generated by electrically conductive liquid as it moves through a magnetic field, induced voltage is equal to fluid velocity  High Accuracy  Wide turndown  Bi-directional  No moving parts  No pressure loss to system  Conductive fluids only  Expensive to use on large pipes Conductive liquids (condensate)

24 24 Technologies Cont’d TechnologyOperating Principle AdvantagesDisadvantagesFluids Measured Transit-time Ultrasonic Fluid velocity measured by time arrival difference of sound waves from upstream and downstream transducers  Low cost clamp-on installation  Non-intrusive  No maintenance  Bi-directional  Best for larger pipes  Typically not used on pipes < 2”  Less accurate than inline or insertion meters  Used primarily for liquids  Susceptible to changes in fluid sonic properties Most liquids (condensate) Gas (when spool- piece) Doppler Ultrasonic Fluid velocity measured by sensing signals from reflective materials within the liquid and measuring the frequency shift due to the motion of these reflective materials  Low-cost, clamp-on installation  Non-intrusive  Measures liquids containing particulates or bubbles  Low maintenance  Best for larger pipes  Can’t be used in clean liquids  Less accurate than in-line or transit-time ultrasonic Most liquids containing reflective materials Thermal Mass Measure heat loss of heated wire thermistor in fluid flow  Measure flow at low pressure  Relative low cost  Measure fluids not dense enough for mechanical technologies  Easier to maintain than DP meter  Susceptible to sensor wear and failure  Not very accurate  Limited to fluids with known heat capacities Gases

25 25 The orifice plate is a differential pressure flow meter (Primary element). Based on the work of Daniel Bernoulli the relationship between the velocity of fluid passing through the orifice is proportional to the square root of the pressure loss across it. To measure the differential pressure when the fluid is flowing, connections are made from the upstream and downstream pressure tappings to a secondary device known as a DP (Differential Pressure) cell. Orifice Plate Flowmeter Fig. 4.3.1 Orifice plate

26 26 Orifice Plate Flowmeter

27 27 Advantages: l Low cost, especially on large sizes l No need for recalibration l Widely accepted Disadvantages: l Poor turndown (4:1 typical) l Long installations (20D to 30D) l Accuracy dependant on geometry. Complete Customer Data Sheet: Customer details Fluid Operating pressure Operating temperature Estimate flow rate Line size, Pipe Schedule, Material Flange Specification Required package option Orifice Plates

28 28 Variable orifice flow meter Line sizes 2-8” Temp up to 842°F (450°C) Accuracy ±1.0% of rate Gas and Steam applications Compact installation - 6 up and 3 down Up to 100:1 turndown

29 29 Digital variable orifice flow meter Line sizes 2-4” Saturated Steam ONLY 347°F (175°C) Accuracy ±2.0% of flow Internal RTD for Integrated mass flow measurement Compact installation - 6 up and 3 down Up to 50:1 turndown

30 30 Vortex Flowmeter Liquid, Gas, and Steam 1-12” (25 to 300mm) Temperature up to 750°F(400°C) EZ-Logic menu-driven user interface In-process removable sensor (below 750psig) Fully welded design with no leak path Optional remote mount electronic Accuracy  Liquid ±0.7% of rate  Gas and Steam ±1.0% of rate Turndown up to 20:1 Vortex

31 31 Insertion Vortex Meter Liquid, Gas, and Steam Model 60/60S Hot Tap, retractable Model 700 Insertion low temp, low pressure Model 910/960 Hot tap, retractable  960-high temp up to 500°F (260°C), high pressure Optional Temperature and/or Pressure Transmitter Line sizes 3-80” (76 to 2032mm) No moving parts EZ-Logic menu driven user interface Accuracy  Liquid ±1.0% of rate  Gas and Steam ±1.5% of flow rate test conditions Turndown up to 20:1 VBar

32 32 Turbo-Bar Insertion Turbine Flow Meter Liquid, Gas, and Steam Liquid flow velocity down to 1 ft/sec Model 60/60S Hot Tap, retractable Model 700 Insertion low temp, low pressure Model 910/960 Hot tap, retractable  960-high temp up to 750°F (400°C), high pressure Optional Pressure and/or Temperature Transmitter Line sizes 3-80” (76 to 2032mm) EZ-Logic menu driven user interface Nominal Accuracy  Liquids ±1.0% of rate  Gas and Steam ±1.5% of rate Turndown up to 25:1 TMP

33 33 Low-cost Water Vortex Meter No Moving Parts Flow Range 1 to 15 ft/s (0.3 to 4.5 m/sec) Accuracy ±1.0% of Full Scale 1/2 to 20” Line Size Microprocessor-based electronics with optional local display Maximum Fluid temperature 160°F (70°C) Model 2300 for acids, solvents, De- ionized, and ultra pure water (1/2 to 8”) Model 2200 Fixed Insertion for (2 to 20”) Model 1200 for water, water/glycol (1-3”) Model 3100 retractable insertion (3-20”) Models 1200 and 2200 have Aluminum Enclosure option for wet environments or heavy industrial installations 1200 2200 3100 2300

34 34 Transit Time Ultrasonic Flowmeter Liquid applications-Clean 2-100” (50 to 2540mm) Accuracy typically ±2.0% of rate Non-Intrusive No wetted parts Multiple outputs available EZ-Logic menu driven user interface Bi-Directional Transducer cable length up to 300’ Sono-Trak

35 35 Electromagnetic Flowmeter  Field Serviceable Design  Field replaceable sensors and coils  No Liner Required  No liner failure  Solid State Sensor Design  Encapsulated coil and electrode assembly insensitive to shock and Vibration  Plurality of Sensors  Uniquely powerful magnetic field  Non-standard Flow Tube Lengths  Easy replacement of existing meters  Measures Low Conductivity Media  Conductivity down to 0.8 µS/cm

36 THERMAL MASS FLOW METERS FOR MEASURING GAS FLOW

37 WHAT IS A THERMAL MASS FLOW METER?  It is a Meter that directly measures the Gas Mass Flow based on the principle of conductive and convective heat transfer – more detail later…

38 MEASURE MASS FLOW RATE OR TOTALIZE COMMON GASES  Air (Compressed Air, Blower Air, Blast Furnace Air, Combustion Air, Plant Air, Make-Up Air)  Natural Gas Industrial (Plant Usage, Sub- Metering, Boiler Efficiency, Combustion Control)  Natural Gas Commercial & Governmental (Building Automation – Reduce Energy Costs, LEED Credits, Meet Regulations)  Digester Gas, Bio Gas, Landfill Gas (especially for EPA regulations and Carbon Credits)  Flare Gas (Vent Gas and Upset – Dual Range)  Other: Propane, Nitrogen, Argon, CO2

39 WHAT DO THE SENSORS CONSIST OF?  The Sensors are RTDs, which are resistance temperature detectors  They consist of highly stable reference- grade platinum windings  In fact, we use the same material that is used as Platinum Resistance Standards at the National Institute of Standards (NIST)

40 THE BASIC PRINCIPLE  The RTDs are clad in a protective 316 SS sheath for Industrial Environments  One of the RTDs is self-heated by the circuitry and serves as the Flow Sensor  The other RTD acts as a Reference Sensor. Essentially it is used for Temperature Compensation

41 SAGE PROPRIETARY SENSOR DRIVE CIRCUITRY  Circuitry maintains a constant overheat between the Flow Sensor and Reference Sensor  As Gas Flows by the Heated Sensor (Flow Sensor), the molecules of flowing gas carry heat away from this sensor, and the Sensor cools down as it loses energy  Circuit equilibrium is disturbed, and momentarily the delta T between the Heated Sensor and the Reference Sensor has changed  The circuit will automatically (within 1 second), replace this lost energy, by heating up the Flow Sensor so the overheat temperature is restored

42 HOW DO THE RTDs MEASURE MASS FLOW  The current required to maintain this overheat represents the Mass Flow signal  There is no need for external Temperature or Pressure devices

43 INSERTION STYLE  ½” Probes up to 24” long  Typically for pipes from 1” up to 30”  ¾” Probes up to 60” Long  Typically for very large pipes and ducts  Or use multiple probes, one in each quadrant and average in large ducts  Isolation Valve Assemblies available  Flanged Mounting available (High P or T)  Captive Flow Conditioners (2” – 24” Dia.)

44 INSERTIONS NEED STRAIGHT RUN (Min 10 up, 5 down)*  *If insufficient straight run, consider Sage inexpensive Captive Flow Conditioners EEEE

45 CAPTIVE FLOW CONDITIONERS OPTIONALLY INSTALLED BY USERS UPSTREAM OF INSERTION METERS IF INSUFFICIENT STRAIGHT RUN

46 IN-LINE METERS  ¼” Flow Bodies up to 4” NPT or Flanged  Built-in Flow Conditioning (>1/2”)

47 TYPES OF MASS FLOW METERS

48 REMOTE MASS FLOW METERS

49 DIGITAL THERMAL MASS FLOW METERS

50 SAGE PRIMETM  Powerful State-of-The-Art Microprocessor Technology  High Performance Mass Flow Measurement at Low Cost-of-Ownership  Proprietary Digital Sensor Drive Circuit Provides Enhanced Signal Stability  Low Power Dissipation, under 2.5 Watts (<100 ma at 24 VDC)

51 SAGE PRIMETM (Continued)  High Contrast Photo-Emissive Organic LEDs (OLEDs)  Displays Calibration Milliwatts (mw) for Ongoing Diagnostics (Zero Calibration Check)  Modbus Compliant RS485 RTU Communications (IEEE 32 Bit Floating Point)  Remote Style has Lead-Length Compensation – Up to 1000 Feet  24 VDC or 115/230 VAC Power  12 VDC Option (for Solar Energy)

52 SAGE PRIME DISPLAY (CONTINUED)  High Contrast OLEDs Visible even in Sunlight  Graphical Display – Displays Pctg of FS Rate  Flow Rate in any Units (per Sec, Min or Hour)  Totalizes up to 9 digits, then rolls over  Displays Temperature in ºF or ºC  Continuously Displays raw milliwatts (mw) for ongoing Diagnostics (zero mw on Certificate)  Diagnostic LEDs for Power and Modbus

53 INPUT/ OUTPUTS  24 VDC Power (draws less than 100 ma)  115 VAC/ 230VAC or 12 VDC Optional  Outputs 4 – 20 ma of Flow Rate  Outputs 12 VDC Pulses of Totalized Flow (Solid State, sourcing, transistor drive – 500ms Pulse)  Modbus® compliant RS485 Communications

54 ELECTRONICS MOUNTING

55 RECONFIGURABILITY  Basis MODBUS ADDRESSER Software and Ulinx  Advanced ADDRESSER PLUS  DONGLE shown below (no computer needed)

56 THERMAL MFM ADVANTAGES (OVER OTHER TYPES OF TECHNOLOGIES)  Direct Mass Flow – No need for separate temperature or pressure transmitters  High Accuracy and Repeatability  Turndown of 100 to 1 and resolution as much as 1000 to 1  Low-End Sensitivity – Detects leaks, and measures as low as 5 SFPM!

57 ADDITIONAL BENEFITS (Pressure Independence) 15 Data Points at 110 psig (BP), than same output, even at 0 psig (No Back Pressure)

58 Separate Rear Enclosure   The rear compartment, which is separated from the electronics, has large, easy-to-access and well marked terminals, for ease of customer wiring

59 Building Automation Contractors  Mandate to Reduce Energy Consumption  Needs Assessments/Portable Testing  Permanent Monitoring tied to Control Systems - -NG, Air, N2

60 Compressed Air  Facilities Monitoring  Sub-metering/Billing  Leak Detection  Energy Conservation  Compressor Optimization  Performance Testing

61 ?????????????????????? QUESTIONS AND ANSWERS

62 Complete solutions...... to all your instrumentation needs !!!


Download ppt "FLOW INSTRUMENTATION 101 Your Logo Here Dave Schmitt Escondido / Irvine “Serving the Southwest’s Instrumentation Needs Since 1987 ” Dave Schmitt Escondido."

Similar presentations


Ads by Google