Presentation is loading. Please wait.

Presentation is loading. Please wait.

Laser-Plasma Accelerators : Status, Applications and Perspectives

Similar presentations


Presentation on theme: "Laser-Plasma Accelerators : Status, Applications and Perspectives"— Presentation transcript:

1 Laser-Plasma Accelerators : Status, Applications and Perspectives
Victor Malka LOA, ENSTA – CNRS - École Polytechnique, Palaiseau cedex, France 1 mm Laser beam Electron beam INFN, Frascati, March 7 (2006)

2 Pukhov, University of Dusseldorf, Germany
SPL ELF Particle group F. Ewald J. Faure Y. Glinec A. Lifschitz Laser group F. Burgy B. Mercier J.Ph. Rousseau Collaborators Pukhov, University of Dusseldorf, Germany E. Lefebvre, CEA/DAM Ile-de-France, France Supported by EEC under FP6 : CARE INFN, Frascati, March 7 (2006)

3 Classical accelerator limitations
E-field max ≈ few 10 MeV /meter (Breakdown) R>Rmin Synchrotron radiation Energy = Length = $$$ Circle road LEP at CERN PARIS 27 km 31 km New medium : the plasma INFN, Frascati, March 7 (2006)

4 n E ~ w n E ~ Are Relativistic Plasma waves efficient ?
Why is a Plasma useful ? Superconducting RF-Cavities : Ez = 55 MV/m Plasma is an Ionized Medium High Electric Fields e p z n E ~ w e z n E ~ Are Relativistic Plasma waves efficient ? Ez = 0.3 GV/m for 1 % Density Perturbation at 1017 cc-1 Ez = 300 GV/m for 100 % Density Perturbation at 1019 cc-1 INFN, Frascati, March 7 (2006)

5 How to excite Relativistic Plasma waves?
The laser wake field Laser pulse F≈-grad I Electron density perturbation Phase velocity vfepw=vglaser => close to c Analogy with a boat tlaser≈ Tp / 2 =>Short laser pulse Tajima&Dawson, PRL79 INFN, Frascati, March 7 (2006)

6 Analogy electron/surfer
1 2 3 electron g > > g e f > > 1 E =2( d n/n) g 2 mc 2 => E (MeV)=( d n/n)(n /n ) max f max c e L = l g 2 =>L =( l /2)(n /n ) 3/2 Deph. p f deph. c e Analogy: INFN, Frascati, March 7 (2006)

7 INFN, Frascati, March 7 (2006)

8 Injected electrons acceleration with laser :
Wake field (Beat wave) Few MeV gain Laser Injected electrons Few MeV INFN, Frascati, March 7 (2006)

9 Noise due to scattered electrons
LULI/LPNHE/LPGP/LSI/IC Wakefield : Acceleration in 1.5 GV/m The 3-MeV electrons are accelerated up to ≈ 4.5 MeV 1 10 100 1000 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Number of electrons Energy (MeV) Noise due to scattered electrons 2.5 J, 350 fs, 1017W/cm2, 0.5 mbar He Amiranoff et al. PRL 1998 INFN, Frascati, March 7 (2006)

10 Direct production of e-beam
Laser beam 1 mm Electron beam INFN, Frascati, March 7 (2006)

11 How to generate an electron beam?
Self-modulated Laser Wakefield Scheme (Andreev, Sprangle, Antonsen 1992) ct >> lp excites enhances Wavebreaking Pc(GW) = 17 w02/wp2 Short Pulse Energetic Electrons if then INFN, Frascati, March 7 (2006)

12 Wave breaking : from waves to particles
INFN, Frascati, March 7 (2006)

13 Relativistic wave breaking
. Relativistic wave breaking Electrons/MeV 10 5 6 4 3 1 2 20 40 60 80 100 120 Energy (MeV) ne=0.5x1019cm-3 ne=1.5x1019cm-3 Electron spectra Forward Raman Spectra 10 -1 1 2 3 4 5 6 -2 Intensity (U. A.) spectral shift (wp) ne=0.5x1019cm-3 ne=1.5x1019cm-3 Multiple satellites : high amplitude plasma waves broadening at higher densities Loss of coherence of the relativistic plasma waves A. Modena et al., Nature 1995 INFN, Frascati, March 7 (2006)

14 Salle Jaune Laser Oscillator : 2 nJ, 15 fs Stretcher : 500 pJ, 400 ps 8-pass pre-Amp. : 2 mJ Nd:YAG : 10 J 5-pass Amp. : 200 mJ 4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps After Compression : 1 J, 30 fs, 0.8 mm, 10 Hz, 10 -7 2 m

15 Neutral profil density measurements :
. Neutral profil density measurements : the gas jet’s lab z z 2 mill. 2 mill. 2 mill. rayon 2 mill. rayon Densité de neutre (cm -3 ) 10 5 Phase (radians) 16 1 Density (10 18 cm -3 ) 2 1 8 4 6 9 - 4 3 2 1 Rayon (mm) V. Malka et al., RSI (2000) INFN, Frascati, March 7 (2006)

16 For laser plasma studies
Gas Jet Nozzle Design For laser plasma studies D crit D exit L opt Mach N ext cm-3 D crit D exit L opt Mach N ext cm-3 mm mm mm exit mm mm mm exit 0.5 1 4 3.3 16 x 10 19 1 2 6 3.5 18 x 10 19 0.5 2 5 5.5 4.5 x 10 19 1 3 7 4.75 7.5 x 10 19 0.5 3 5 6.2 2.1 x 10 19 1 5 10 7 2.7 x 10 19 0.5 5 7 9.5 0.7 x 10 19 1 10 15 10 0.75 x 10 19 S. Semushin & V. Malka et al., RSI (2001) INFN, Frascati, March 7 (2006)

17 Tunable electron beam : temperature
F/6 Tunable electron beam : temperature Electrons are accelerated by epw 10 100 10 6 7 8 9 20 30 40 50 60 70 # electrons/MeV/sr W (MeV) T eff =8.1 MeV =2.6MeV detection threshold Ne=1.5x1019cm-3 Ne=1.5x1020cm-3 (MeV) max INCREASE THE ACCELERATION LENGTH E 10 19 20 n (cm -3 ) e E max = 4 g p 2 m e c d n V. Malka et al., PoP (2001) INFN, Frascati, March 7 (2006)

18 Interaction chamber (inside)
Laser beam electron beam 50 cm INFN, Frascati, March 7 (2006)

19 Summary of FLWF previous results
Experiments 10 6 7 8 9 11 50 100 150 200 250 Energy (MeV) Number of electron (/MeV/sr) 3D PIC simulations 10 10 9 10 8 10 Number of electron (/MeV/sr) 7 10 6 10 Detection Threshold 5 10 50 100 150 200 Energy (MeV) V. Malka et al., Science, 298, 1596 (2002) INFN, Frascati, March 7 (2006)

20 Low Normalized Emittance
Emittance is indeed comparable with todays Accelerators Electron Energy (MeV) n (  mm mrad) 20 40 60 Ee- = ~ 55 MeV = ~ 3  mm mrad en x (mm) x (mrad) - Ee- = ~ 20 MeV = ~ 32  mm mrad 0.5 -0.25 0.25 -0.05 0.05 S. Fritzler et al., PRL 04 INFN, Frascati, March 7 (2006)

21 SMLWF : Multiple e- bunches / FLWF Single e- bunch
V. Malka, Europhysics news, April 2004 Ps/fs Electron bunch laser Electron density perturbation ne/n0-1 Electric field fs Electron bunches laser Electric field Ps INFN, Frascati, March 7 (2006)

22 Laser pulse autocorrelation
Lineouts Possible shape 9.5 fs time (fs) no plasma ne=7.5×1018 cm-3 1.3 r (mm) -150 150 sensitive to ct/lp duration depends on pulse shape (gaussian) Initial duration t ~ 38+/-2 fs Final duration t ~ 9.5+/-2 fs Energy efficiency ~ 20 % J. Faure et al., Phys. Rev. Lett. 95, (2005) INFN, Frascati, March 7 (2006)

23 Quasi-Monoenergetic Electron Beams In homogenous plasma : virtual or real?
E, MeV t=350 t=450 t=550 t=650 t=750 t=850 5 10 8 1 10 9 N e / MeV Time evolution of electron spectrum monoenergetic electron beam VLPL A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002) One stage LPA INFN, Frascati, March 7 (2006)

24 Experimental Setup : single shot measurement
INFN, Frascati, March 7 (2006)

25 Recent results on e-beam : Spatial quality improvements
5.0 x 1019cm-3 3.0 x 1019cm-3 2.0 x 1019cm-3 1.0 x 1019cm-3 7.5 x 1018cm-3 6.0 x 1018cm-3 Divergence = 6 mrad INFN, Frascati, March 7 (2006)

26 Recent results on e-beam : From Mono to maxwellian spectra
Electron density scan V. Malka, et al., PoP 2005 INFN, Frascati, March 7 (2006)

27 Energy distribution improvements:
The Bubble regime Charge in [ ] MeV : (500 ±200) pC PIC Experiment Divergence = 6 mrad INFN, Frascati, March 7 (2006)

28 FLWF/BR : Beam charge improvement
Bubble regime FLWF DE/E=10% 500 Charge (pC) Energy (MeV) INFN, Frascati, March 7 (2006)

29 14 Groups have now measured a quasi mono energetic e-beam
very hot topic ! 14 Groups have now measured a quasi mono energetic e-beam 50 pC 300 pC RAL & LBNL INFN, Frascati, March 7 (2006)

30 Applications and New Science
Medicine X-rays:diffraction g-rays:radiography Material science Radiotherapy Proton-therapy Radioisotopes PET Radiobiology New science on “ultrashort phenomena” Chemistry Accelerator Physics e beam, and p beam ? and nuclear physics High current Radiolysis by ultra short e or p beam INFN, Frascati, March 7 (2006)

31 Particle beam in medicine : Radiotherapy
99% Radiotherapy with X ray INFN, Frascati, March 7 (2006)

32 Radiation Therapy : context
Photon beams are commonly used for radiation therapy Photon dose Photon beam Dose tumor tumor Depth in tissue INFN, Frascati, March 7 (2006)

33 Medical application : Radiotherapy
e beam VHE ELECTRONS INFN, Frascati, March 7 (2006)

34 VHE Radiation Therapy Reduced dose in save cells Deep traitement
Good lateral contrast VHE Dose VHE dose tumor tumor Depth in tissue INFN, Frascati, March 7 (2006)

35 Monte Carlo simulation of the dose deposition in water
e beam Electron gun : quasi-monoenergetic (170MeV) with 0.5nC and 10mrad divergence Water target : 40cm x 4cm x 4cm divided in 100 pixels in all directions. Simulation parameters : CutRange=100um and N0=105 electrons In collaboration with DKFZ INFN, Frascati, March 7 (2006)

36 Dose deposition profile in water
e beam Glinec et al., Med. Phys. 33, 1 (2006) INFN, Frascati, March 7 (2006)

37 Application: high resolution g-radiography
Advantages: low divergence, point-like electron source In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM INFN, Frascati, March 7 (2006)

38 g-radiography results
Higher resolution: of the order of 400 mm object measured calculated In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM Y. Glinec et al., Phys. Rev. Lett., (2005) INFN, Frascati, March 7 (2006)

39 Application for radiolysis :
e- H2O (e-s, OH., H2O2, H3O+, H2, H.) Very important for: Biology Ionising radiations effects In collaboration with Y. Gauduel ‘s group INFN, Frascati, March 7 (2006)

40 radiolysis in the sub ps domain:
B. Brozek-Pluska, et al. Radiation and Chemistry, 72, (2005). INFN, Frascati, March 7 (2006)

41 Applications : X rays source Laser based Synchrotron radiation
Accélérateur E (GeV) lu ~ cm Laser onduleur Rayonnement X 100 m Ce qu'on fait peut se comparer directement a un synchrotron. Dans un synchrotron, on accelere des e- puis on les fait osciller dans un onduleur. ca fait des X. Ici, c'est pareil sauf qu'on peut faire des periodes tres courtes et se contenter d'e- de plus faible energie. On fait tout dans un plasma. Ce qui correspond a convertir un faisceau laser en un faisceau de RX et on peut multiplier la frequence par envirion ! 3 mm E (MeV) lu ~ mm INFN, Frascati, March 7 (2006)

42 A. Rousse et al., Phys. Rev. Lett 93, 135005(2004)
Principles of the Betatron radiation Plasma accelerator Acceleration field ~ TeV / meter EL  200 MeV q = K/g r0 ~mm X-ray beam: 109 ph/shot 20 mrad femtosecond x Helium Plasma wiggler lu ~ 100 mm K ~ 20>1,wiggler lu ~ 100 mm Betatron oscillation K ~ gr0/lbet. A. Rousse et al., Phys. Rev. Lett 93, (2004) INFN, Frascati, March 7 (2006)

43 The laser plasma accelerators status
Laser plasma acceleration has demonstrated Energy gains of 1 MeV to 200 MeV E-fields of 1 GV/m to 1000 GV/m Good e-beam quality : Emittance < 3pmm.mrad charge at high energy Quasi monoenergetic Very high peak current : 100 kA Laser plasma accelerators advantages Provide e-beam with new parameters : short Provide e-beam with new parameters : high current Provide e-beam with new parameters : Collimated Compact and low cost INFN, Frascati, March 7 (2006)

44 Perspectives Laser plasma accelerator: enhance stability
electron sources up to ≈ 1 GeV (nC, <1 ps): Guiding or PW class laser systems Single Stage (Pukhov, Mori) (200TW) Generate a tunable e-beam applications of these electron sources Compact XFEL INFN, Frascati, March 7 (2006)

45 PW class : GeV electron beams => XFEL
= 20 m t 30 fs a 4 l . 8 P 200 TW n p 1 5 10 18 cm - 3 After 5 Zr / 7.5 mm 0.5 1 1.5 2 2.5 800 1200 1600 2000 Energy (MeV) f(E) (a.u.) * Gordienko et al, PoP 2005, UCLA& Golp groups INFN, Frascati, March 7 (2006)

46 GeV acceleration in two-stages
Laser Laser Gas-Jet Plasma channel GeV 1 J 10 TW 30 fs Nozzle TW ~50 fs 170±20 MeV 30 fs 10 mrad Density profile rc Δn Pulse guiding condition : Δn>1/πre rc2 n0 Weak nonlinear effects  more control : a0 ~ 1-2 High quality beams : Lb <λp  n0<1018 cm-3 INFN, Frascati, March 7 (2006)

47 V. Malka et al., Plasma Phys. Control. Fusion 47 (2005) B481–B490
GeV in low plasma density in plasma channel n0= cm-3, 11 J TW rc=40 μm, Δn=2 n0 L channel=4 cm 8 cm 12 cm 4 2 3 1 800 400 1200 dN/dE(a.u.) Energy (MeV) Electric field Electron bunch Electric field Electron bunch V. Malka et al., Plasma Phys. Control. Fusion 47 (2005) B481–B490 INFN, Frascati, March 7 (2006)

48 1% bandwidth for 1.2 GeV high quality e-beam
Ultra-short bunch Electron bunch Electric field x 2 4 6 8 10 12 0,5 1 1,5 E(GeV) dN/dE n0= cm-3, 10 J-0.16 PW Lchannel = 18 cm, Emittance : 0.01mm.mrad V. Malka et al., to be published in NIM A Applications: study of complex structures (X-ray diffraction, EXAFS) But ps time scale ps q ~ mrad 10cm

49 Extreme Light Infrastructure ELI
A science integrator that will bring many frontiers of contemporary physics, i.e. relativistic plasma physics, particle physics, nuclear physics, gravitational physics, nonlinear field theory, ultrahigh pressure physics, and cosmology together. ELI will provide a new generation of compact accelerators delivering ultra short (fs-as) and energetic particle and radiation beams for European scientists. ELI will work in close contact with synchrotron X rays FEL community. ELI will also be an Extreme Light technology platform ready to reduce to practice the latest invention and discovery in relativistic engineering INFN, Frascati, March 7 (2006)

50 Extreme Light Infrastructure Exawatt Laser
Fundamental Interaction Ultra-Relativistic optics Super hot plasma Nuclear Physics Astrophysics General relativity Ultra fast phenomena NLQED Secondary Beam Sources Electrons Positron ion Muon Neutrino Neutrons X rays g rays accelerators Synchr. Xfel Relativistic Engineering Attosecond optics Rel. Microelectronic Rel. Microphotonic Nuclear treatement Nuclear pharmacology Hadron therapy Radiotherapy Material science INFN, Frascati, March 7 (2006)

51 Relativistics microelectronic devices
Courtesy of W. Mori & L. da Silva Plasma cavity 100 mm 1 m RF cavity INFN, Frascati, March 7 (2006)

52 ELI’s strategy for accelerator physics
1PW >1Hz 10PW, 1 Hz >100PW, 1Hz GeV e-beam .2 GeV p-beam 10 GeV e-beam GeV p-beam 50 GeV e-beam few GeV p-beam Beam lines for users e, p, X, g, etc… synchroton & XFEL communities Fundamental physics Multi stage accelerator Single stage accelerator Accelerator community INFN, Frascati, March 7 (2006)

53 Parameter designs Laser Plasma Accelerators
ELI : > 100 GeV a0=4 P(PW) τ (fs) ne(cm-3) W0 (μm) L(m) E(J) Q(nC) E(Gev) 0.12 30 2e18 15 0.009 3.6 1.3 1.12 1.2 100 2e17 47 0.28 120 4 11.2 12 300 2e16 150 9 3.6k 13 112 120 1000 2e15 470 280 120k 40 1120 Golp and UCLA Group INFN, Frascati, March 7 (2006)

54 « conventional » technology Maximale Electrons Energy (MeV)
ELI Electron beam energy and laser power evolution 10 6 1012 1013 1014 1015 1016 1017 Laser Power (W) « conventional » technology 10 5 ELI 10 4 Maximale Electrons Energy (MeV) 103 *LLNL LOA  *LUND 102 RAL   LOA *LLNL UCLA KEK 10 ILE ¤ UCLA LULI   1 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years INFN, Frascati, March 7 (2006)

55 Towards an Integrated Scientific Project for European Researcher : ELI
. . ELI . INFN, Frascati, March 7 (2006)


Download ppt "Laser-Plasma Accelerators : Status, Applications and Perspectives"

Similar presentations


Ads by Google