Presentation is loading. Please wait.

Presentation is loading. Please wait.

1/18/2008CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying.

Similar presentations

Presentation on theme: "1/18/2008CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying."— Presentation transcript:

1 1/18/2008CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne (2007). Many, if not all, the illustrations contained in this presentation come from this source.

2 1/18/2008CSCI 315 Operating Systems Design2 Memory Layout for a Simple Batch System Operating System User Program Area One programs: it’s loaded, runs to completion, and leaves the system.

3 1/18/2008CSCI 315 Operating Systems Design3 Multiprogrammed Batch Systems Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them. Operating System Job 1 Job 2 Job 3 Job 4 0 512K

4 1/18/2008CSCI 315 Operating Systems Design4 OS Features Needed for Multiprogramming I/O routine supplied by the system. Memory management – the system must allocate the memory to several jobs. CPU scheduling – the system must choose among several jobs ready to run. Allocation of devices.

5 1/18/2008CSCI 315 Operating Systems Design5 Time-Sharing Systems Interactive Computing The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory). A job swapped in and out of memory to the disk. On-line communication between the user and the system is provided: –When the operating system finishes the execution of one command, it seeks the next “control statement” from the user’s keyboard On-line system must be available for users to access data and code.

6 1/18/2008CSCI 315 Operating Systems Design6 Desktop Systems Personal computers – computer system dedicated to a single user. I/O devices – keyboards, mice, display screens, small printers. User convenience and responsiveness. Can adopt technology developed for larger operating system: –Often individuals have sole use of computer and do not need advanced CPU utilization of protection features. May run several different types of operating systems (Windows, MacOS, UNIX, Linux).

7 1/18/2008CSCI 315 Operating Systems Design7 Parallel Systems Systems with more than one CPU in close communication (also known as multiprocessor systems). Tightly coupled system – processors share memory and a clock; communication usually takes place through the shared memory. Advantages of parallel system: –Increased throughput –Economical –Increased reliability (in some cases) graceful degradation fail-soft systems

8 1/18/2008CSCI 315 Operating Systems Design8 Parallel Systems (Cont.) Asymmetric multiprocessing –Each processor is assigned a specific task; master processor schedules and allocated work to slave processors. –More common in extremely large systems. Symmetric multiprocessing (SMP) –Each processor runs an identical copy of the operating system. –Many processes can run at once without performance deterioration. –Most modern operating systems support SMP.

9 1/18/2008CSCI 315 Operating Systems Design9 Symmetric Multiprocessing Architecture CPU Memory CPU...

10 1/18/2008CSCI 315 Operating Systems Design10 Distributed Systems Distribute the computation among several physical processors. Loosely coupled system – each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines. Advantages of distributed systems: –Resources Sharing, –Computation speed up – load sharing, –Reliability, –Communications.

11 1/18/2008CSCI 315 Operating Systems Design11 Distributed Systems (cont.) Requires networking infrastructure. Local area networks (LAN) or Wide area networks (WAN). May be either client-server or peer-to- peer systems.

12 1/18/2008CSCI 315 Operating Systems Design12 General Structure of Client-Server System Client Server Client... network

13 1/18/2008CSCI 315 Operating Systems Design13 Clustered Systems Clustering allows two or more systems to share storage. Provides high reliability. Asymmetric clustering: one server runs the application or applications while other servers standby. Symmetric clustering: all N hosts are running the application or applications.

14 1/18/2008CSCI 315 Operating Systems Design14 Real-Time Systems Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems. Well-defined fixed-time constraints. Real-Time systems may be either hard or soft real-time.

15 1/18/2008CSCI 315 Operating Systems Design15 Real-Time Systems (Cont.) Hard real-time: –Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM). –Conflicts with time-sharing systems, not supported by general-purpose operating systems. Soft real-time: –Limited utility in industrial control of robotics. –Integrate-able with time-share systems. –Useful in applications (multimedia, virtual reality) requiring tight response times.

16 1/18/2008CSCI 315 Operating Systems Design16 Handheld Systems Personal Digital Assistants (PDAs). Cellular telephones. Issues: –Limited memory, –Slow processors, –Small display screens.

17 1/18/2008CSCI 315 Operating Systems Design17 Migration of Operating System Concepts and Features

18 1/18/2008CSCI 315 Operating Systems Design18 Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection Network Structure

19 1/18/2008CSCI 315 Operating Systems Design19 A Modern Computer System CPU Disk Controller I/O Controller... Disks Mouse Keyboard Printer Memory Graphics Adapter Network Interface Monitor

20 1/18/2008CSCI 315 Operating Systems Design20 Computer-System Operation I/O devices and the CPU can execute concurrently. Each device controller is in charge of a particular device type. Each device controller has a local buffer. CPU moves data from/to main memory to/from local buffers. I/O is from the device to local buffer of controller. Device controller informs CPU that it has finished its operation by causing an interrupt.

21 1/18/2008CSCI 315 Operating Systems Design21 Common Functions of Interrupts Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines. Interrupt architecture must save the address of the interrupted instruction. Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt. A trap is a software-generated interrupt caused either by an error or a user request. An operating system is interrupt driven.

22 1/18/2008CSCI 315 Operating Systems Design22 Interrupt Handling The operating system preserves the state of the CPU by storing registers and the program counter. Determines which type of interrupt has occurred: –polling, –vectored interrupt system. Separate kernel routines determine what action should be taken for each type of interrupt.

23 1/18/2008CSCI 315 Operating Systems Design23 I/O Systems I/O subsystem hides peculiarities of devices from rest of system. It contains: Memory management component General device driver interface Drivers for specific hardware devices

24 1/18/2008CSCI 315 Operating Systems Design24 DMA Structure Used for high-speed I/O devices able to transmit information at close to memory speeds. Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention. Only on interrupt is generated per block, rather than the one interrupt per byte.

25 1/18/2008CSCI 315 Operating Systems Design25 Storage Structure Main memory – only large storage media that the CPU can access directly. Secondary storage – extension of main memory that provides large nonvolatile storage capacity. Magnetic disks – rigid metal or glass platters covered with magnetic recording material: –Disk surface is logically divided into tracks, which are subdivided into sectors, –The disk controller determines the logical interaction between the device and the computer.

26 1/18/2008CSCI 315 Operating Systems Design26 Storage Hierarchy Storage systems organized in hierarchy: –Speed, –Cost, –Volatility. Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.

27 1/18/2008CSCI 315 Operating Systems Design27 Caching Use of high-speed memory to hold recently- accessed data. Requires a cache management policy. Caching introduces another level in storage hierarchy: –This requires data that is simultaneously stored in more than one level to be consistent.

28 1/18/2008CSCI 315 Operating Systems Design28 From Disk to Register Consider a system with virtual memory in which an integer variable A has been swapped out of “core” and currently resides on disk. Consider that a machine instruction moves that variable from memory into a register. Question: What is the sequence of events that ensues until the value of A is finally stored in a register?

Download ppt "1/18/2008CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying."

Similar presentations

Ads by Google