Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hadrons and Nuclei : Scattering Lattice Summer School Martin Savage Summer 2007 University of Washington.

Similar presentations


Presentation on theme: "Hadrons and Nuclei : Scattering Lattice Summer School Martin Savage Summer 2007 University of Washington."— Presentation transcript:

1 Hadrons and Nuclei : Scattering Lattice Summer School Martin Savage Summer 2007 University of Washington

2 Why Scattering with Lattice QCD ?  Reproducing what is known is important check of lattice QCD, but intrinsically not interesting----not new physics  e.g. NN scattering at physical pion mass  Calculating quantities that cannot be determined (well) any other way is the underlying motivation  e.g. YN scattering, nnn, weak-YN, d ¾ d ­ ( m q )

3 Present Nuclear Theory fails to Reproduce (a few!) Precise Expts

4 Courtesy of W. Tornow, data from TUNL, calculations by Present Nuclear Theory fails to Reproduce Precise expts (2)

5 Worlds YN Data Polinder et al

6    p → K     Production)    p →    p  Scattering)    n → K   Production)  p →  p  Scattering) Hyperon-Nucleon Scattering Experiments Kozi Nakai (KEK) (talk given at Hypernuclear 2006 (Mainz))

7 Beam SCITIC0    Production   p Scattering  Production  p Scattering Hyperon-Nucleon Scattering Experiments Kozi Nakai (KEK) su suu Weak decay Strong scatter

8 Neutron Stars (1)  Why are we interested in scattering of strange baryons (and mesons) ?  Supernova Remnant ?  neutron stars or black holes, or black holes, ….. kaon condensation, strange baryons ? …..

9 Neutron Stars (2) Atmosphere Envelope Crust Outer Core Inner Core Homogeneous Matter Lasagna Nuclei + Neutron superfluid n-superfluid and p superconductor Reddy and Page astro-ph/0608360

10 Neutron Stars (3) : Hyperons in Neutron Matter n   n YN interactions shift the mass of Y in a neutron background H » ® § y § n y n + M ( 0 ) § § y § + :::: ! ³ M ( 0 ) § + ®½ n ´ § y § + :::: M ean ¡ F i e ld

11 Neutron Stars (4) Vacuum - Masses With Interactions -- meson exchange model WithOUT Interactions We Need QCD Calculations to Improve upon Model Calcs Reddy and Page astro-ph/0608360

12 Low-Energy Scattering, Phase-Shifts and Scattering Parameters (1) Analytic function of com energy Review :

13 Low-Energy Scattering, Phase-Shifts and Scattering Parameters (2) k co t ± = ¡ 1 a + 1 2 r k 2 + ::: a = Scattering Length r = Effective Range Can take any valueSize dictated by range of interaction

14 Low-Energy Scattering, Phase-Shifts and Scattering Parameters (3) k = 0 k = = 0 a ± Ã = 1 ¡ r a

15 Maiani-Testa no-go Theorem (1)  (s) ? S-matrix elements cannot be extracted from infinite-volume Euclidean-space correlation functions except at kinematic thresholds.

16 Maiani-Testa no-go Theorem (2) j pp i ou t = S y j pp i i n ou t h pp j pp i i n = i n h pp j S j pp i i n = e i 2 ± ( b e l ow i ne l as t i c t h res h o ld s ) Consider the Euclidean-space correlation function associated with a source J(x) that couples to two protons G E ( t 1 ; t 2 ;q ) = h 0 j © q ( t 1 ) © ¡ q ( t 2 ) J ( 0 )j 0 i J(0) (s-wave to s-wave) © q ( t ) © ¡ q ( t ) Interpolating fields for proton

17 Maiani-Testa no-go Theorem (3) This dominates at long times unless 2 E q is equal to the minimum value of E n Away from Kinematic threshold…..cannot isolate S-matrix elements from Euclidean space correlators h 0 j Á ( 0 ; 0 )j p i = p Z © q = R d 3 xe ¡ i q ¢ x Á ( x ; t )

18 Maiani-Testa no-go Theorem (4) In Minkowski space 2 E q P q ( J ; t 2 ) ! 1 2 ( ou t h pp j J ( 0 )j 0 i ¡ i n h pp j J ( 0 )j 0 i)

19 Luscher (1) Compute something else !!!! Work in finite-volume and look at energy-levels Non-Relativistic QM analysis = Lee + Yang E ( j ) 0 = h 0 ( 0 ) j ^ V j 0 ( j ¡ 1 ) i ; J-th order g.s. energy-shift Unperturbed g.s. wavefunction J-th order contribution to g.s. wavefunction

20 Lee + Yang (2) k = 2 ¼ L n n = ( n x ; n y ; n z ) h r j k i = 1 L 3 = 2 e i k ¢ r h r 1 ; r 2 j k ; ¡ k i = 1 L 3 e i k ¢ ( r 1 ¡ r 2 ) P er i o d i c B. C. g i ve r ! r + m L

21 Lee + Yang (3) : Energies ^ V = ´ ± 3 ( ^ r 1 ¡ ^ r 2 ) ¢E 0 = E ( 1 ) 0 + E ( 2 ) 0 + ::: = ´ L 3 2 4 1 ¡ ´ M 4 ¼ 2 L X n 6 = 0 1 j n j 2 + ::: 3 5

22 Lee + Yang (4) : Threshold Scattering ^ V = ´ ± 3 ( ^ r 1 ¡ ^ r 2 ) f = ¡ ¹ 2 ¼ Z d 3 r V ( r ) ¡ ¹ 2 ¼ Z d 3 r 1 Z d 3 r 2 V ( r 1 ) G + ( r 1 ; r 2 ) V ( r 2 ) + ::: = ¡ ¹´ 2 ¼ + ¹ 2 ´ 2 ¼ Z d 3 p ( 2 ¼ ) 3 1 j p j 2 + i ² + :::: = a ´ = ¡ 4 ¼a M · 1 ¡ 4 ¼a Z d 3 p ( 2 ¼ ) 3 1 j p j 2 + i ² + ::: ¸

23 Lee + Yang (4) : Combining ^ V = ´ ± 3 ( ^ r 1 ¡ ^ r 2 ) ¢E 0 = ¡ 4 ¼a ML 3 2 4 1 + ³ a ¼ L ´ 0 @ ¤ j X n 6 = 0 1 j n j 2 ¡ 4 ¼ ¤ j 1 A + ::: 3 5

24 Luscher (5) : True in QFT !! Below Inelastic thresholds and lattices L >> R UV regulator Measure on lattice S ( x ) = l i m ¤ j ! 1 ¤ j X j 1 j j j 2 ¡ x 2 ¡ 4 ¼ ¤ j pco t ± ( E ) = 1 ¼ L S µ p L 2 ¼ ¶

25 Luscher (6) : Methodology? (x,t) (y,t) source G ( 0 ; 0 ) 2 ( t ) h G ( 0 ) 1 ( t ) i 2 ! e ¡ ( E 2 ¡ 2 M ) t G ( p 1 = 0 ; p 2 = 0 ) 2 ( t ) = Z d 3 x Z d 3 y G 2 ( y ; t ;x ; t ; 0 ; 0 ) ! A 2 e ¡ E 2 t G ( p = 0 ) 1 ( t ) = Z d 3 x G 1 ( x ; t ; 0 ; 0 ) ! A 1 e ¡ M t

26 Luscher (7) : Methodology? G ( 0 ; 0 ) 2 ( t ) h G ( 0 ) 1 ( t ) i 2 ! e ¡ ( E 2 ¡ 2 M ) t T = E 2 ¡ 2 M = 2 p q 2 + M 2 ¡ 2 M pco t ± ( T ) = 1 ¼ L S µ q L 2 ¼ ¶

27 Many-Bosons (1) 3-boson interaction numbers

28 3-Bosons (1)

29 I=2   Simplest hadronic scattering process  Physics Wise  Computationally C ( t ) = G ( 0 ; 0 ) 2 ( t ) h G ( 0 ) 1 ( t ) i 2 ! A 2 A 2 1 e ¡ ( E 2 ¡ 2 M ) t l og · C ( t ) C ( t + 1 ) ¸ ! E 2 ( t ) ¡ 2 M = T ( t ) = 2 p q 2 ( t ) + M 2 ¡ 2 M pco t ± ( T ( t )) = 1 ¼ L S µ q ( t ) L 2 ¼ ¶

30 I=2  [ m ¼ a ¼ + ¼ + ]( t ) m ¼ » 350 M e V e.g. Beane et al, arXiv:0706.3026

31 I=2  Beane et al, arXiv:0706.3026 m ¼ a I = 2 ¼¼ = ¡ m 2 ¼ 8 ¼ f 2 ¼ ( 1 + m 2 ¼ 16 ¼ 2 f 2 ¼ " 3 l og µ m 2 ¼ ¹ 2 ¶ ¡ 1 ¡ l I = 2 ¼¼ ( ¹ ) #) (2007)

32 I=2  Beane et al, arXiv:0706.3026 Ã m ¼ ; f ¼

33 Lattice m  /f  is the way to go Two-flavor mixed-action Chen, O’Connell, Walker-Loud m ¼ a I = 2 ¼¼ = ¡ m 2 ¼ 8 ¼ f 2 ¼ ( 1 + m 2 ¼ ( 4 ¼ f ¼ ) 2 · 3 l n µ m 2 ¼ ¹ 2 ¶ ¡ 1 ¡ l I = 2 ¼¼ ( ¹ ) ¡ ~ ¢ 4 j u 6 m 4 ¼ ¸ )

34 I=0 ?  Computationally expensive Need to compute N ~ Volume propagators I = 2 I = 0 u u d d u u

35 I=0  Point to all propagators all to all propagators

36 CP-PACS : Phase-shift (extrapolation) CP-PACS 12 3 X 24 16 3 X 32 24 3 X 48 L = 2.5 fm n f = 2 (2002)

37  – Scattering phase-shift CP-PACS

38 K  and KK Scattering Lattice QCD + Chiral Symmetry b = 0.125 fm (S. Beane, P. Bedaque, T. Luu, K. Orginos, E. Pallante, A.Parreno, mjs) K +  + K +

39 Baryon Potentials from LQCD Why bother with the scattering amplitude…just calculate the potential, and use that in the Schrodinger equation !!! h 0 j ^ O 1 ( x ; t 0 ) i ® ^ O 1 ( y ; t 0 ) j ¯ j à 0 i = Z ( S ; I ) NN (j r j)h 0 j N ( x ; t 0 ) i ® N ( y ; t 0 ) j ¯ j à 0 i + ::: ^ O 1 ( x ; t ) i ® = ² a b c q i ; c ® ¡ q a ; T C ° 5 ¿ 2 q b ¢ ( x ; t ) G NN ( x ; y ; t ) = h 0 j ^ O 1 ( x ; t ) i ® ^ O 1 ( y ; t ) j ¯ J ( 0 )j 0 i = X n h 0 j ^ O 1 ( x ; 0 ) i ® ^ O 1 ( y ; 0 ) j ¯ j à n ih à n j J ( 0 )j 0 i e ¡ E n t 2 E n

40 Baryon Potentials from LQCD (2) Potential between two infinitely massive mesons is well-defined e.g. B-mesons in the HQ limit – E = V(R) r is a constant of the motion U E ( r ) = E + 1 2 ¹ r 2 G NN G NN 1 2 ¹ r 2 G NN + U E ( r ) G NN = EG NN trivially 1 ] Energy-dependent potential… i.e. each different energy requires a different potential ….not as useful as it first sounds !!! 2 ] NOT unique … only constrained to reproduce ONE quantity ….  ( E 0 )

41 Q Q QQ Direct Exchange BB t-channel Potentials... Insight into NN ? B B BB ¼¼¼ B -meson h as I = 1 2 ; s l = 1 2

42 BB (2) (W. Detmold, K.Orginos, mjs, 2007) Quenched : a = 0.1 fm

43 Periodic Boundary Conditions and Images

44 BB (3) (W. Detmold, K.Orginos, mjs )

45 Tensor Force between BB ? Deuteron

46 Quenched Potential : Hairpins  No strong anomaly ´ 0 i sa l soapseu d o- G o ld s t one b oson G ´´ ( q 2 ) = i ( q 2 ¡ m 2 ¼ + i ² ) + i ( M 2 0 ¡ ® © q 2 ) ( q 2 ¡ m 2 ¼ + i ² ) 2 V ( Q ) ( r ) = 1 8 ¼ f 2 ¾ 1 ¢ r ¾ 2 ¢ r µ g 2 A ¿ 1 ¢ ¿ 2 r + g 2 0 1 ¡ ® © r ¡ g 2 0 M 2 0 ¡ ® © m 2 ¼ 2 m ¼ ¶ e ¡ m ¼ r Dominates at long-distances

47 Nucleons on the Lattice ~ ¾ x = p h G 2 i ¡ h G i 2 h G i ! e ( M N ¡ 3 2 m ¼ ) t 3 ¼ Mesons are easy, Nucleons are hard and two nucleons are even harder !!! G.P. Lepage, Tasi 1989

48 Large Scattering Lengths are OK ! Require : L >> r 0 but ANY a  M  = 350 MeV 2.5 fm lattices...  YESTERDAY !!

49  M  = 350 MeV 2.5 fm lattices...  TODAY !! NN on the Lattice ~E L 2 Deuteron 1st continuum 2nd continuum (S. Beane, P. Bedaque, A.Parreno, mjs) Effective Field Theory Calculation at Finite-Volume

50 NN Correlators 1S01S0 3 S 1 - 3 D 1 G Fully-Dynamical QCD Domain-Wall Valence on rooted-Staggered Sea  C n Exp [-E n t] n C 0 Exp [-E 0 t]

51 NN Scattering (S. Beane, P. Bedaque, K. Orginos, mjs ; PRL97, 012001 (2006)) 1 S 0 : pp, pn, nn 3 S 1 - 3 D 1 : pn : deuteron a ~ 1/m  Scale-Invariance

52 NN is Fine-Tuned a 1 S 0 n p = ¡ 23 : 710 § 0 : 030 f m ; r 1 S 0 n p = + 2 : 73 § 0 : 03 a 3 S 1 n p = + 5 : 432 § 0 : 005 f m ; r 3 S 1 n p = + 1 : 73 § 0 : 02 a >> r

53 Toy-Model r = 0 a = + 1 ~E L 2

54 Hyperon-N Interactions (S.Beane, P.Bedaque, T.Luu, K.Orginos, E.Pallante, A.Parreno, mjs, 2006) |k| = 261 MeV |k| = 179 MeV |k| = 255 MeV|k| = 169 MeV

55  Interactions --- I=0, J=0, s=2 -ve Energy Shift ? M  = 590 MeV

56 Luscher Relation -- revisited pco t ± ( E ) = 1 ¼ L S µ p L 2 ¼ ¶ V = 0 ! a = r = :::: = 0 S ( ´ ) = 1 Non-interacting particles k = 2 ¼ L n n = ( n x ; n y ; n z ) T < 0T > 0 Bound-state or Scattering state ?

57 Bound states are also described !! ° + pco t ± j p 2 = ¡ ° 2 = 0 E ¡ 1 = ¡ ° 2 M · 1 + 12 ° L 1 1 ¡ 2 ° ( pco t ± ) 0 e ¡ ° L + ::: ¸ pco t ± ( E ) = 1 ¼ L S µ p L 2 ¼ ¶ (S. Beane, P. Bedaque, A.Parreno, mjs)

58 Bound States vs Scattering States (1) L = 200 b 1/r = M  = 350 MeVa = 10, 5, 1, -1, -5, -10 fm () P L 2  2 p cot  ´ = b = 0.125 fm Bound States

59 Bound States vs Scattering States (3) L = 20 b 1/r = M  = 350 MeVa = 10, 5, 1, -1, -5, -10 fm () P L 2  2 p cot  ´ << ´ 0 ! mos t pro b a bl ya b oun d s t a t e ´ 0 ´ =

60 NN Resource Requirements with Current Algorithms NN Scattering Length fixed at 2 fm for demonstrative purposes Domain-Wall Propagator Generation ONLY !! Does not include time for lattice generation

61 Contractions  Usually  Lattice generation > propagator generation > contractions Not so for nuclear physics Need high statistics.. Many propagators per lattice Large number of quarks in initial and final states con t rac t i ons » u !d! s ! = ( A + Z ) ! ( 2 A ¡ Z ) ! S ! P ro t on: N con t : = 2 235 92 U : N con t : = 10 1494

62 nnn  Important for neutron rich nuclei  Lattice calc. is not as easy as   Cannot have all at rest as they are fermions

63 Closing Remarks on Scattering  Two hadron scattering can be studied with lattice QCD by studying the energy eigenstates at finite-volume  Simplest system well-understood  Baryon-baryon systems still very primitive.. a lot of room for improvement and contribution

64 The END


Download ppt "Hadrons and Nuclei : Scattering Lattice Summer School Martin Savage Summer 2007 University of Washington."

Similar presentations


Ads by Google