Presentation is loading. Please wait.

Presentation is loading. Please wait.

VAR and VEC Using Stata.

Similar presentations


Presentation on theme: "VAR and VEC Using Stata."— Presentation transcript:

1 VAR and VEC Using Stata

2 VAR: Vector Autoregression
Assumptions: yt: Stationary K-variable vector v: K constant parameters vector Aj: K by K parameters matrix, j=1,…,p ut: i.i.d.(0,S) Trend may be included: dt, where d is K by 1 Exogenous variables X may be added

3 VAR and VEC If yt is not stationary, VAR or VEC can only be applied for cointegrated yt system: VAR (Vector Autoregression) VEC (Vector Error Correction)

4 VEC: Vector Error Correction
If there is no trend in yt, let P = ab’ (P is K by K, a is K by r, b is K by r, r is the rank of P, 0<r<K):

5 VEC: Vector Error Correction
No-constant or No-drift Model: v = 0 g = 0, m = 0 Restricted-constant Model: v = am g = 0, m ≠ 0 Constant or Drift Model: g ≠ 0, m ≠ 0

6 VEC: Vector Error Correction
If there is trend in yt

7 VEC: Vector Error Correction
No-drift No-trend Model: v = 0, d = 0 g = 0, m = 0, t = 0, r = 0 Restricted-constant Model: v = am, d = 0 g = 0, m ≠ 0, t = 0, r = 0 Constant or Drift Model: d = 0 g ≠ 0, m ≠ 0, t = 0, r = 0 Restricted-trend Model: d = ar g ≠ 0, m ≠ 0, t = 0, r ≠ 0 Trend Model: g ≠ 0, m ≠ 0, t ≠ 0, r ≠ 0

8 Example C: Personal Consumption Expenditure
Y: Disposable Personal Income C ~ I(1), Y ~ I(1) Consumption-Income Relationship: Ct = vc + acc1Ct-1 + acy1Yt-1 +…(+ dct) + ec Yt = vy + ayc1Ct-1 + ayy1Yt-1 +…(+ dyt) + ey Cointegrated C and I: e ~ I(0)? Which model? (trend and/or drift) How many lags?

9 Example Johansen Test with trend models and 6 lags
VAR: VEC: Rank 1: P = ab’

10 Example Johansen Test with constant models and 6 lags
VAR: VEC: Rank 1: P = ab’

11 Example Johansen Test with constant models and 6 lags
Constant model: v = am + g (a 0, g0) Restricted-constant model: v = am (a 0) No-constant model: v = 0

12 Example Johansen Test with trend models and 6 lags
Trend model: d = ar+t g ≠ 0, m ≠ 0, t ≠ 0, r ≠ 0 Restricted trend model: d = ar g ≠ 0, m ≠ 0, t = 0, r ≠ 0 No trend or constant model: d = 0 g ≠ 0, m ≠ 0, t = 0, r = 0

13 Example VEC estimated models with 6 lags
Empirical Model: 1948q3 – 2012q3 (N=257) No-constant: LL= (K=23) Restricted-constant: LL= (K=24) Restricted-trend: LL= (K=27)

14 VEC Forecasting Estimated Models: 1948q3 – 2009q4
No-constant model, 6 Lags (LL= , 23 parameters, N=246) Restricted-constant model, 6 lags (LL= , 24 parameters, N=246) Restricted-trend model, 6 lags (LL = , 27 parameters, N=246)

15 VEC Forecasting Restricted-trend Model, 6 Lags Y = ln(PCE), X = ln(DPI), 2010q1 -


Download ppt "VAR and VEC Using Stata."

Similar presentations


Ads by Google