Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4 Molecular Symmetry

Similar presentations


Presentation on theme: "Chapter 4 Molecular Symmetry"— Presentation transcript:

1 Chapter 4 Molecular Symmetry
Dr. S. M. Condren

2 Dr. S. M. Condren

3 Symmetry Elements and Symmetry Operations
Identity Proper axis of rotation Mirror planes Center of symmetry Improper axis of rotation Dr. S. M. Condren

4 Symmetry Elements and Symmetry Operations
Identity => E Dr. S. M. Condren

5 Symmetry Elements and Symmetry Operations
Proper axis of rotation => Cn where n = 2, 180o rotation n = 3, 120o rotation n = 4, 90o rotation n = 6, 60o rotation n = , (1/ )o rotation principal axis of rotation, Cn Dr. S. M. Condren

6 2-Fold Axis of Rotation Dr. S. M. Condren

7 3-Fold Axis of Rotation Dr. S. M. Condren

8 Rotations for a Trigonal Planar Molecule
Dr. S. M. Condren

9 Symmetry Elements and Symmetry Operations
Mirror planes => sh => mirror plane perpendicular to a principal axis of rotation sv => mirror plane containing principal axis of rotation sd => mirror plane bisects dihedral angle made by the principal axis of rotation and two adjacent C2 axes perpendicular to principal rotation axis Dr. S. M. Condren

10 Mirrors sv sv Cl Cl sh I sd sd Dr. S. M. Condren

11 Rotations and Mirrors in a Bent Molecule
Dr. S. M. Condren

12 Benzene Ring Dr. S. M. Condren

13 Symmetry Elements and Symmetry Operations
Center of symmetry => i Dr. S. M. Condren

14 Center of Inversion Dr. S. M. Condren

15 Inversion vs. C2 Dr. S. M. Condren

16 Symmetry Elements and Symmetry Operations
Improper axis of rotation => Sn rotation about n axis followed by inversion through center of symmetry Dr. S. M. Condren

17 Improper Rotation in a Tetrahedral Molecule
Dr. S. M. Condren

18 S1 and S2 Improper Rotations
Dr. S. M. Condren

19 Successive C3 Rotations on Trigonal Pyramidal Molecule
Dr. S. M. Condren

20 Linear Molecules Dr. S. M. Condren

21 Selection of Point Group from Shape
first determine shape using Lewis Structure and VSEPR Theory next use models to determine which symmetry operations are present then use the flow chart Figure 3.9, Pg. 81 text to determine the point group Dr. S. M. Condren

22 Dr. S. M. Condren

23 Decision Tree Dr. S. M. Condren

24 Selection of Point Group from Shape
1. determine the highest axis of rotation 2. check for other non-coincident axis of rotation 3. check for mirror planes Dr. S. M. Condren

25 H2O and NH3 Dr. S. M. Condren

26 Dr. S. M. Condren

27 Dr. S. M. Condren

28 Geometric Shapes Dr. S. M. Condren

29 Orbital Symmetry, pz C2v z E + X(E) = +1 - + + C2(z) x
- + + C2(z) x X(C2(z)) = +1 y sv(xz) - X(sv(xz)) = +1 sv(yz) - X(sv(xz)) = +1 Dr. S. M. Condren

30 Orbital Symmetry, py C2v - X(E) = +1 z + E + - C2(z) x - X(C2(z)) = -1
sv(xz) y + X(sv(xz)) = -1 - sv(yz) - + X(sv(xz)) = +1 Dr. S. M. Condren

31 Orbital Symmetry, px C2v z X(E) = +1 - + E C2(z) x + - - +
X(C2(z)) = -1 y sv(xz) - + X(s(xz)) = +1 sv(yz) + - X(sv(xz)) = -1 Dr. S. M. Condren

32 Water, C2v Point Group Translational motion in y
z y o o H H H H x sv(xz) “asymmetric” => -1 Dr. S. M. Condren

33 Water, C2v Point Group Translational motion in y
z o y H H x o H H sv(yz) “symmetric” => +1 Dr. S. M. Condren

34 Water, C2v Point Group Translational motion in y
z y C2(z) x O H H “asymmetric” = - 1 Dr. S. M. Condren

35 Water, C2v Point Group Translational motion in y
Representation: E C2(z) sv(xz) sv(yz) G Dr. S. M. Condren

36 Water, C2v Point Group Rotation about z axis
rHa Hbs r - movement out of plane towards observer s - movement out of plane away from observer a,b - labeling to distinguish hydrogens before and after symmetry operations Dr. S. M. Condren

37 Water, C2v Point Group Rotation about z axis
O E O rHa Hbs rHa Hbs +1 Dr. S. M. Condren

38 Water, C2v Point Group Rotation about z axis
O C2z O rHa Hbs rHb Has +1 Dr. S. M. Condren

39 Water, C2v Point Group Rotation about z axis
O sv(xz) O rHa Hbs sHb Har x -1 Dr. S. M. Condren

40 Water, C2v Point Group Rotation about z axis
O sv(yz) O rHa Hbs sHa Hbr -1 Dr. S. M. Condren

41 Water, C2v Point Group Rotation about z axis
Representation E C2(z) sv(xz) sv(yz) G Dr. S. M. Condren

42 Water, C2v Point Group Representations: Rotation E C2(z) sv(xz) sv(yz)
Dr. S. M. Condren

43 Water, C2v Point Group E C2(z) sv(xz) sv(yz) G1 +1 +1 +1 +1 Tz
Representation: Translation E C2(z) sv(xz) sv(yz) G Tz G Tx G Ty Dr. S. M. Condren

44 Water, C2v Point Group E C2(z) sv(xz) sv(yz) G4 +1 +1 -1 -1 Rz
Representation: Rotation E C2(z) sv(xz) sv(yz) G Rz G Ry G Rx Dr. S. M. Condren

45 Water, C2v Point Group E C2(z) sv(xz) sv(yz) A1 +1 +1 +1 +1 Tz G1
Character Table E C2(z) sv(xz) sv(yz) A Tz G1 A Rz G4 B Ry, Tx G2 , G5 B Rx,Ty G3, G6 Dr. S. M. Condren

46 Dr. S. M. Condren

47 Vibrational Modes in CO2
For linear molecules: 3N - 5 IR fundamentals Dr. S. M. Condren

48 Vibrational Modes in SO2
For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren

49 Vibration Modes for SO3 For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren

50 Vibrational Modes for CH4
For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren

51 Vibrational Modes for [PtCl4]-2
For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren

52 Enantiomer Pairs Dr. S. M. Condren

53 Enantiomer Pairs Dr. S. M. Condren

54 Polarimeter Dr. S. M. Condren


Download ppt "Chapter 4 Molecular Symmetry"

Similar presentations


Ads by Google