Download presentation
1
Chapter 4 Molecular Symmetry
Dr. S. M. Condren
2
Dr. S. M. Condren
3
Symmetry Elements and Symmetry Operations
Identity Proper axis of rotation Mirror planes Center of symmetry Improper axis of rotation Dr. S. M. Condren
4
Symmetry Elements and Symmetry Operations
Identity => E Dr. S. M. Condren
5
Symmetry Elements and Symmetry Operations
Proper axis of rotation => Cn where n = 2, 180o rotation n = 3, 120o rotation n = 4, 90o rotation n = 6, 60o rotation n = , (1/ )o rotation principal axis of rotation, Cn Dr. S. M. Condren
6
2-Fold Axis of Rotation Dr. S. M. Condren
7
3-Fold Axis of Rotation Dr. S. M. Condren
8
Rotations for a Trigonal Planar Molecule
Dr. S. M. Condren
9
Symmetry Elements and Symmetry Operations
Mirror planes => sh => mirror plane perpendicular to a principal axis of rotation sv => mirror plane containing principal axis of rotation sd => mirror plane bisects dihedral angle made by the principal axis of rotation and two adjacent C2 axes perpendicular to principal rotation axis Dr. S. M. Condren
10
Mirrors sv sv Cl Cl sh I sd sd Dr. S. M. Condren
11
Rotations and Mirrors in a Bent Molecule
Dr. S. M. Condren
12
Benzene Ring Dr. S. M. Condren
13
Symmetry Elements and Symmetry Operations
Center of symmetry => i Dr. S. M. Condren
14
Center of Inversion Dr. S. M. Condren
15
Inversion vs. C2 Dr. S. M. Condren
16
Symmetry Elements and Symmetry Operations
Improper axis of rotation => Sn rotation about n axis followed by inversion through center of symmetry Dr. S. M. Condren
17
Improper Rotation in a Tetrahedral Molecule
Dr. S. M. Condren
18
S1 and S2 Improper Rotations
Dr. S. M. Condren
19
Successive C3 Rotations on Trigonal Pyramidal Molecule
Dr. S. M. Condren
20
Linear Molecules Dr. S. M. Condren
21
Selection of Point Group from Shape
first determine shape using Lewis Structure and VSEPR Theory next use models to determine which symmetry operations are present then use the flow chart Figure 3.9, Pg. 81 text to determine the point group Dr. S. M. Condren
22
Dr. S. M. Condren
23
Decision Tree Dr. S. M. Condren
24
Selection of Point Group from Shape
1. determine the highest axis of rotation 2. check for other non-coincident axis of rotation 3. check for mirror planes Dr. S. M. Condren
25
H2O and NH3 Dr. S. M. Condren
26
Dr. S. M. Condren
27
Dr. S. M. Condren
28
Geometric Shapes Dr. S. M. Condren
29
Orbital Symmetry, pz C2v z E + X(E) = +1 - + + C2(z) x
- + + C2(z) x X(C2(z)) = +1 y sv(xz) - X(sv(xz)) = +1 sv(yz) - X(sv(xz)) = +1 Dr. S. M. Condren
30
Orbital Symmetry, py C2v - X(E) = +1 z + E + - C2(z) x - X(C2(z)) = -1
sv(xz) y + X(sv(xz)) = -1 - sv(yz) - + X(sv(xz)) = +1 Dr. S. M. Condren
31
Orbital Symmetry, px C2v z X(E) = +1 - + E C2(z) x + - - +
X(C2(z)) = -1 y sv(xz) - + X(s(xz)) = +1 sv(yz) + - X(sv(xz)) = -1 Dr. S. M. Condren
32
Water, C2v Point Group Translational motion in y
z y o o H H H H x sv(xz) “asymmetric” => -1 Dr. S. M. Condren
33
Water, C2v Point Group Translational motion in y
z o y H H x o H H sv(yz) “symmetric” => +1 Dr. S. M. Condren
34
Water, C2v Point Group Translational motion in y
z y C2(z) x O H H “asymmetric” = - 1 Dr. S. M. Condren
35
Water, C2v Point Group Translational motion in y
Representation: E C2(z) sv(xz) sv(yz) G Dr. S. M. Condren
36
Water, C2v Point Group Rotation about z axis
rHa Hbs r - movement out of plane towards observer s - movement out of plane away from observer a,b - labeling to distinguish hydrogens before and after symmetry operations Dr. S. M. Condren
37
Water, C2v Point Group Rotation about z axis
O E O rHa Hbs rHa Hbs +1 Dr. S. M. Condren
38
Water, C2v Point Group Rotation about z axis
O C2z O rHa Hbs rHb Has +1 Dr. S. M. Condren
39
Water, C2v Point Group Rotation about z axis
O sv(xz) O rHa Hbs sHb Har x -1 Dr. S. M. Condren
40
Water, C2v Point Group Rotation about z axis
O sv(yz) O rHa Hbs sHa Hbr -1 Dr. S. M. Condren
41
Water, C2v Point Group Rotation about z axis
Representation E C2(z) sv(xz) sv(yz) G Dr. S. M. Condren
42
Water, C2v Point Group Representations: Rotation E C2(z) sv(xz) sv(yz)
Dr. S. M. Condren
43
Water, C2v Point Group E C2(z) sv(xz) sv(yz) G1 +1 +1 +1 +1 Tz
Representation: Translation E C2(z) sv(xz) sv(yz) G Tz G Tx G Ty Dr. S. M. Condren
44
Water, C2v Point Group E C2(z) sv(xz) sv(yz) G4 +1 +1 -1 -1 Rz
Representation: Rotation E C2(z) sv(xz) sv(yz) G Rz G Ry G Rx Dr. S. M. Condren
45
Water, C2v Point Group E C2(z) sv(xz) sv(yz) A1 +1 +1 +1 +1 Tz G1
Character Table E C2(z) sv(xz) sv(yz) A Tz G1 A Rz G4 B Ry, Tx G2 , G5 B Rx,Ty G3, G6 Dr. S. M. Condren
46
Dr. S. M. Condren
47
Vibrational Modes in CO2
For linear molecules: 3N - 5 IR fundamentals Dr. S. M. Condren
48
Vibrational Modes in SO2
For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren
49
Vibration Modes for SO3 For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren
50
Vibrational Modes for CH4
For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren
51
Vibrational Modes for [PtCl4]-2
For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren
52
Enantiomer Pairs Dr. S. M. Condren
53
Enantiomer Pairs Dr. S. M. Condren
54
Polarimeter Dr. S. M. Condren
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.