Download presentation
1
Basics of the parametric frailty model
Luc Duchateau Ghent University, Belgium
2
Overview Frailty distributions The parametric gamma frailty model
The parametric positive stable frailty model The parametric lognormal frailty model
3
Frailty distributions
Power variance function family Gamma Inverse Gaussian Positive stable General PVF Compound Poisson Lognormal
4
Parametric gamma frailty model Frailty density function (1)
Two-parameter gamma density One-parameter gamma density
5
Parametric gamma frailty model Frailty density function examples
One-parameter gamma density
6
Parametric gamma frailty model Laplace transform of frailty density
Characteristic function Moment generating function Laplace transform for positive r.v.
7
Parametric gamma frailty model Laplace transf. generates moments
Generate nth moment Use nth derivative of Laplace transform Evaluate at s=0
8
Parametric gamma frailty model Gamma Laplace transform
9
Parametric gamma frailty model Joint survival function (1)
Joint survival function in conditional model Now use notation For cluster with covariates
10
Parametric gamma frailty model Joint survival function (2)
Applied to Laplace transform of gamma distribution we obtain
11
Parametric gamma frailty model Population survival function (1)
Integrate conditional survival function Population density function Population hazard function
12
Parametric gamma frailty model Population survival function (2)
Applied to gamma distribution we have Population hazard function
13
Graphically #Set parameters
condHR<-2;Ktau.list<-c(0.05,0.1,0.25,0.5,0.75) Theta.list<-2*Ktau.list/(1-Ktau.list);Sij<-seq(0.999,0.001,-0.001);Fij<-1-Sij #Plot population/conditional hazard plot(Fij,(Sij)^(Theta.list[1]),xlab="Sx,f(t)",type="n",ylab="Population/conditional hazard",axes=F,ylim=c(0,1.7)) box();axis(1,at=seq(0,1,0.2),labels=seq(1,0,-0.2),lwd=0.5);axis(2,lwd=0.5) lines(c(Fij,1),c((Sij)^(Theta.list[1]),0),lty=1,lwd=1) lines(c(Fij,1),c((Sij)^(Theta.list[2]),0),lty=2,lwd=1) lines(c(Fij,1),c((Sij)^(Theta.list[3]),0),lty=3,lwd=1) lines(c(Fij,1),c((Sij)^(Theta.list[4]),0),lty=4,lwd=1) lines(c(Fij,1),c((Sij)^(Theta.list[5]),0),lty=5,lwd=1) legend(0,1.75,legend=c(expression(paste(tau,"=0.05, ",theta,"=0.105")), expression(paste(tau,"=0.10, ",theta,"=0.222")), expression(paste(tau,"=0.25, ",theta,"=0.500")), expression(paste(tau,"=0.50, ",theta,"=2.000")), expression(paste(tau,"=0.75, ",theta,"=6.000"))), ncol=2,lty=c(1,2,3,4,5))
14
Parametric gamma frailty model Population vs conditional hazard
15
Parametric gamma frailty model Population hazard ratio
Using population hazard functions For the gamma frailty distribution
16
Graphically plot(Fij,(Sij^(-Theta.list[1]))/(1/condHR+Sij^(-Theta.list[1])-1) ,xlab="Sx,f(t)",type="n",ylab="Population hazard ratio",axes=F,ylim=c(1,2.5)) box() axis(1,at=seq(0,1,0.2),labels=seq(1,0,-0.2),lwd=0.5) axis(2,at=seq(1,2.5,0.5),labels=seq(1,2.5,0.5),srt=90,lwd=0.5) lines(c(Fij,1),c((Sij^(-Theta.list[1]))/(1/condHR+Sij^(-Theta.list[1])-1),1),lty=1,lwd=1) lines(c(Fij,1),c((Sij^(-Theta.list[2]))/(1/condHR+Sij^(-Theta.list[2])-1),1),lty=2,lwd=1) lines(c(Fij,1),c((Sij^(-Theta.list[3]))/(1/condHR+Sij^(-Theta.list[3])-1),1),lty=3,lwd=1) lines(c(Fij,1),c((Sij^(-Theta.list[4]))/(1/condHR+Sij^(-Theta.list[4])-1),1),lty=4,lwd=1) lines(c(Fij,1),c((Sij^(-Theta.list[5]))/(1/condHR+Sij^(-Theta.list[5])-1),1),lty=5,lwd=1) legend(0,2.5,legend=c(expression(paste(tau,"=0.05, ",theta,"=0.105")), expression(paste(tau,"=0.10, ",theta,"=0.222")), expression(paste(tau,"=0.25, ",theta,"=0.500")), expression(paste(tau,"=0.50, ",theta,"=2.000")), expression(paste(tau,"=0.75, ",theta,"=6.000"))), ncol=2,lty=c(1,2,3,4,5))
17
Parametric gamma frailty model Population hazard ratio example
18
Parametric gamma frailty model The conditional frailty density (1)
Assuming no covariate information which corresponds for gamma with ~Gamma( , )
19
Parametric gamma frailty model The conditional frailty density (1)
20
Quadruples of correlated event times
Cluster of fixed size 4 Example: Correlated infection times in 4 udder quarters
21
Exercise Fit gamma frailty model with Weibull baseline hazard to time to infection data at udder quarter level
22
R Program gamma frailty model
setwd("c://docs//onderwijs//survival//Flames//notas//") udder <- read.table("udderinfect.dat", header = T,skip=2) library(parfm) cowid<-as.factor(udder$cowid);timeto<-udder$timek stat<-udder$censor;heifer<-udder$LAKTNR udder<-data.frame(cowid=cowid,timeto=timeto,stat=stat,heifer=heifer) parfm(Surv(timeto,stat)~heifer,cluster="cowid",data=udder,frailty="gamma")
23
Parametric gamma frailty model Example – parameter estimates
Udder quarter infection data
24
Population and conditional hazards Exercise
Depict the population hazard together with the conditional hazards for frailties equal to the mean, median and the 25th and 95th percentile of the frailty density
25
Population and conditional hazards R program
lambda<-0.838;theta<-1.793;alpha<-1.979;beta< time<-seq(0,4,0.1) condhaz<-function(t){frail*alpha*lambda*t^(alpha-1)} marghaz<-function(t){(alpha*lambda*t^(alpha-1))/(1+theta*lambda*t^(alpha))} frail<-1;condhaz.frailm<-sapply(time,condhaz); marghaz.marg<-sapply(time,marghaz); lowfrail<-qgamma(0.25,shape=1/theta,rate=1/theta);upfrail<-qgamma(0.75,shape=1/theta,rate=1/theta) frail<-lowfrail;condhaz.fraill<-sapply(time,condhaz) frail<-upfrail;condhaz.frailu<-sapply(time,condhaz)
26
Population and conditional hazards Graph
miny<-min(condhaz.frailm,condhaz.fraill,condhaz.frailu) maxy<-max(condhaz.frailm,condhaz.fraill,condhaz.frailu) par(cex=1.2,mfrow=c(1,2)) plot(c(min(time),max(time)),c(miny,maxy),type='n',xlab='Time (year quarters)',ylab='hazard function') lines(time,condhaz.frailm,lty=1);lines(time,marghaz.marg,lty=1,lwd=3) lines(time,condhaz.fraill,lty=2);lines(time,condhaz.frailu,lty=3)
27
Population and conditional hazards Plot
Udder quarter infection data Heifer Multiparous cow
28
Population and conditional hazard ratio - Exercise
Depict the population and conditional hazard ratio as a function of the poulation survival function
29
Population and conditional hazard ratio - R-program
#Set parameters condHR<-exp(0.317);theta<-1.793;Sij<-seq(0.999,0.001,-0.001);Fij<-1-Sij par(mfrow=c(1,1)) #Plot population/conditional hazard ratio plot(Fij,(Sij^(-theta))/(1/condHR+Sij^(-theta)-1),xlab="Sx,f(t)",ylab="Population hazard ratio",type="n",axes=F,ylim=c(1,2.5)) box() axis(1,at=seq(0,1,0.2),labels=seq(1,0,-0.2),lwd=0.5) axis(2,at=seq(1,2.5,0.5),labels=seq(1,2.5,0.5),srt=90,lwd=0.5) lines(Fij,(Sij^(-theta))/(1/condHR+Sij^(-theta)-1)) segments(0,condHR,1,condHR)
30
Population and conditional hazard ratio - plot
Udder quarter infection data Multiparous cow versus heifer
31
The frailty density mean and variance time evolution - Exercise
Depict the frailty density mean and variance time evolution
32
The frailty density mean and variance time evolution - R-program
#Plot E(u) plot(Fij,(Sij^(theta)),xlab="Sx,f(t)",ylab="Conditional mean",type="l")
33
The frailty density mean and variance time evolution – plot
Udder quarter infection data
34
Parametric gamma frailty model Kendall’s tau
Dependence measures developed for binary data. Take two random clusters i, k with event times Position gives also covariate information Kendall’s tau is or alternatively
35
Parametric gamma frailty model Kendall’s tau for gamma frailties
Kendall’s tau can be expressed in terms of the Laplace transform (without proof) Using the Laplace transform of the gamma frailty, we obtain
36
The cross ratio function a local version Kendall’s tau
We only consider bivariate data such as time to reconstitution Consider the bivariate risk set for two pairs and This bivariate risk set takes values between its maximal size s (number of clusters) and 2
37
The cross ratio function definition
We then define the local measure as We can now consider this local dependence measure for different values of r, where r/s is a proxy for time in terms of survival for uncensored data
38
The cross ratio function estimation
Consider all pairs with particular value r = ra and take ratio of concordant and discordant pairs Often, we rather take a group of adjacent ra’s due to low sample size We will work this out of uncensored data, otherwise we need som further approximations
39
The cross ratio function R programme
#Read data timetodiag<-read.table("timetodiag.csv",header=T,sep=";") timetodiag<-timetodiag[timetodiag$c2!=0,];t1<- timetodiag$t1;t2<- timetodiag$t2 numobs<-length(t1);limit.low<-(seq(0,10)*10)+1;limit.up<- limit.low+9 numpairs<-choose(numobs,2) res<-cbind(limit.low,limit.up,NA); results<-matrix(NA,nrow=numpairs,ncol=8)
40
The cross ratio function R program
#Put values pairwise in results section iter<-0 for (i in 1:(numobs-1)){ for (j in (i+1):numobs){ iter<-iter+1 results[iter,1]<-t1[i] results[iter,2]<-t2[i] results[iter,3]<-t1[j] results[iter,4]<-t2[j] }
41
The cross ratio function R program
#determine the size of the risk set for each pair for (iter in 1:numpairs){ minval1<-min(results[iter,1],results[iter,3]) minval2<-min(results[iter,2],results[iter,4]) temp<-timetodiag[t1>=minval1 & t2>=minval2,] m<-length(temp$t1) results[iter,6]<-m }
42
The cross ratio function R program
#determine the cross ratio function for each group of ra values for (i in 1:10){ low<- limit.low[i] up<- limit.up[i] temp<-results[results[,6]>= low & results[,6]<= up,] conc<-0;discord<-0 for (j in 1:length(temp[,1])){ signcomp<-sign((temp[j,1]-temp[j,3])* (temp[j,2]-temp[j,4])) if (signcomp==1) conc<-conc+1 if (signcomp==-1) discord<-discord+1} res[i,3] <-conc/discord}
43
The cross ratio function Plot and add model based g(r)
resr plot((resr[,1]+ resr[,2])/(2*numobs),resr[,3],xlim=c(1,0),xlab="Estimated survival function",ylab="Cross ratio function") theta<-1.793 cr<-theta+1 segments(0,cr,1,cr)
44
Parametric gamma frailty model Cross ratio function from model
The cross ratio function, a local measure: Interpretation: time to recovery from mastitis Positive experience: constitution at time t2 For positively correlated data, we assume that hazard in numerator>hazard in denominator
45
Parametric gamma frailty model Cross ratio function example
Cross ratio for gamma density is constant For the reconstitution data, we have =0.47 =2.793
46
Parametric positive stable (PS) frailty model
The positive stable distribtion Laplace transform Infinite mean!
47
Parametric PS frailty model Frailty density function examples
Positive stable density functions
48
Parametric PS frailty model Joint survival function
49
Parametric PS frailty model Marginal likelihood (1)
Example: Udder quarter infections, quadruples, clusters of size 4 Five different types of contributions, according to number of events in cluster Order subjects, first uncensored (1, …, l) Contribution of cluster i is equal to =0 >0
50
Parametric PS frailty model Marginal likelihood (2)
Derivatives of Laplace transforms
51
Parametric PS frailty model Marginal likelihood (3)
Marginal likelihood expression cluster i
52
Parametric PS frailty model Population survival function
Integrate conditional survival function Population density function
53
Parametric PS frailty model Population hazard function
Ratio population/conditional hazard
54
Parametric PS frailty model Population vs conditional hazard
55
Parametric PS frailty model Population hazard ratio
Using population hazard functions For the PS frailty distribution
56
Parametric PS frailty model Population hazard ratio example
57
Parametric PS frailty model R programme
58
Parametric PS frailty model Example – parameter estimates
Udder quarter infection data Cond. HR= Pop. HR=
59
Parametric PS frailty model The conditional frailty density
Assuming no covariate information, conditional density not PS, still PVF
60
Parametric PS frailty model Dependence measures
Kendall’s tau is given by Cross ratio function =0.47
61
Parametric PS frailty model Dependence measures
Cross ratio function – two dimensional
62
Parametric lognormal frailty model
Introduced by McGilchrist (1993) as Therefore, for frailty we have
63
Parametric lognormal frailty model Frailty density function examples
Lognormal density functions
64
Parametric lognormal frailty model Laplace transform
No explicit expression for Laplace transform … difficult to compare Maximisation of the likelihood is based on numerical integration of the normally distributed frailties
65
Parametric lognormal frailty model Example udder quarter infection (1)
Numerical integration using Gaussian quadrature (nlmixed procedure) Difficult to compare with previous results as mean of frailty no longer 1 Convert results to density function of median event time
66
Parametric frailty model udder infection: lognormal/gamma
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.