Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)

Similar presentations


Presentation on theme: "PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)"— Presentation transcript:

1 PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10) j.billowes@manchester.ac.uk These slides at: www.man.ac.uk/dalton/phys30101 Lecture 7

2 Plan of action 1.Basics of QM 2.1D QM Will be covered in the following order: 1.1 Some light revision and reminders. Infinite well 1.2 TISE applied to finite wells 1.3 TISE applied to barriers – tunnelling phenomena 1.4 Postulates of QM (i) What Ψ represents (ii) Hermitian operators for dynamical variables (iii) Operators for position, momentum, ang. Mom. (iv) Result of measurement 1.5 Commutators, compatibility, uncertainty principle 1.6 Time-dependence of Ψ

3 Hermitian Operators They have real eigenvalues Eigenfunctions are orthonormal Eigenfunctions form a complete set

4 Summary of postulates 1.A quantum system has a wavefunction associated with it. 2.When a measurement is made, the result is one of the eigenvalues of the operator associated with the measurement. 3.As a result of the measurement the wavefunction “collapses” into the corresponding eigenfunction. 4.The probability of a particular outcome equals the square of the modulus of the overlap between the wavefunction before and after the measurement.

5 Example of a “measurement” Photons of unpolarised light polariser50% transmitted 100% polarised Describe each photon as a linear combination of eigenfunctions of dynamic variable being measured: = 50% VERTICAL + 50% HORIZONTAL After measurement photon collapses into the corresponding eigenfunction After measurement the photon has no memory of its polarization state before the polariser. All subsequent Vertical/Horizontal measurements of transmitted photon will give the definite result: Vertical

6 Example of a “measurement” Photons of unpolarised light Birefringent crystal (eg Icelandic spar) Vertical polarization detector Horizontal polarization detector

7 Today: 1.5(a) Commutators 1.5(b) Compatibility If then the physical observables they represent are said to be compatible: the operators must have a common set of eigenfunctions: Example (1-D): momentum and kinetic energy operators have common set of eigenfunctions After a measurement of momentum we can exactly predict the outcome of a measurement of kinetic energy. 1.4 Finish off with discussion on continuous eigenvalues


Download ppt "PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)"

Similar presentations


Ads by Google