Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elements of Biomedical Image Processing BMI 731 Winter 2005 Kun Huang Department of Biomedical Informatics Ohio State University.

Similar presentations


Presentation on theme: "Elements of Biomedical Image Processing BMI 731 Winter 2005 Kun Huang Department of Biomedical Informatics Ohio State University."— Presentation transcript:

1 Elements of Biomedical Image Processing BMI 731 Winter 2005 Kun Huang Department of Biomedical Informatics Ohio State University

2 -Introduction to imaging processing -Mathematical background -Convolution and Fourier transform -Filtering -Image enhancement -Noise removal -Color correction and color space transform -Feature extraction -Edge, point, line (Hugh transform) -3-D reconstruction -Radon transform

3 -Image Processing : what should be done? -Image restoration and enhancement -Feature extraction -Pattern recognition

4 -Mathematical Background -Convolution -2-D convolution 1724 1815 235 71416 46 132022 101219213 11182529 294 753 618 1x2+8x9+15x4+7x7+14x5 +16x3+13x6+20x1+22x8 =575

5 -Mathematical Background -Fourier transform (FT) -Mathematics -2-D FT

6 -Mathematical Background -Fourier transform (FT) -Fast FT (FFT)

7 -Mathematical Background -Convolution and Fourier transform (FT)

8 -Mathematical Background -Filtering -High-pass filter, low-pass filter, band pass filter -Gradient filters 11 11 11 11 1111 1111

9 -Mathematical Background -Filtering -Wiener filter and deblurring

10 -Image Enhancement -Denoise -Averaging -Median filter 1/9 20543 78322 115189200 43

11 -Image Enhancement -Denoise/restoration From Gonzalez, Woods, and Eddins

12 -Image Enhancement -Color and intensity adjustment -Histogram equalization

13 -Image Enhancement -Color space transform RGB -> HSV, HSL, YCbCr, … R = 64 G = 31 B = 62 R = 125 G = 80 B = 147 H = 199 S = 117 V = 147 H = 214 S = 132 V = 64

14 -Feature Extraction -Region detection – morphology manipulation -Dilate and Erode -Open -Erode  dilate -Small objects are removed -Close -Dilate  Erode -Holes are closed -Skeleton and perimeter

15 -Feature Extraction -Edge detection -Gradients -Canny edge detector -Gaussian smoothing -Gradients -Two thresholds -Thinning 11 11 11 11 1111 1111

16 -Feature Extraction -Point detection -Harris detector x

17 -Feature Extraction -Radon transform -Straight line detection -Hugh transform  y  y

18 -Feature Extraction -Straight line detection -Hugh transform From Gonzalez, Woods, and Eddins

19 -2-D/3-D reconstruction -Radon/inverse radon transforms and backprojection

20 -Reference -Digital Image Processing using Matlab By R.C.Gonzalez, R.E.Woods, and S.L.Eddins Published by Printice-Hall, 2004


Download ppt "Elements of Biomedical Image Processing BMI 731 Winter 2005 Kun Huang Department of Biomedical Informatics Ohio State University."

Similar presentations


Ads by Google