Presentation is loading. Please wait.

Presentation is loading. Please wait.

CEA Saclay CSNSM Orsay GANIL Caen IPN Orsay Univ. Surrey CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. York FZ Juelich.

Similar presentations


Presentation on theme: "CEA Saclay CSNSM Orsay GANIL Caen IPN Orsay Univ. Surrey CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. York FZ Juelich."— Presentation transcript:

1 CEA Saclay CSNSM Orsay GANIL Caen IPN Orsay Univ. Surrey CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. York FZ Juelich FZ Rossendorf GSI Darmstadt HMI Berlin TU/LMU Muenchen MPI Heidelberg TU Darmstadt Univ. Bonn Univ. Koeln KU Leuven Univ. Milano INFN Genova INFN Legnaro INFN/Univ. Napoli INFN/Univ. Padova Univ. Camerino Univ. Firenze KTH Stockholm Univ. Lund Univ. Uppsala NBI Copenhagen IFJ Krakow IPJ Swierk Univ. Krakow Univ. Warszawa Univ. Santiago de Compostela Univ. Madrid Univ. Valencia IFIN, Bucharest Nuclear Structure addressed at GSI/RISING M.Górska, GSI Darmstadt Rare Isotope Spectroscopic INvestigation at GSI: Oct. 2003-2009 Sofia, Bulgaria

2 rp-Process Novae and X-ray bursts r-Process and Supernovae Sp=0Sp=0 S n =0 RISING: Nuclear structure interest N=Z Shell evolution/quenching Isospin competition/symmetry |T z |=T =1: I π =0 + T=0 : I π =1 + or (2j) + Neutron number Proton number

3 EXPERIMENTAL Features: - high energy beams >100MeV/u - unambigous beam identification event by event - cocktail or pure radioactive beam - scattering experiments β~0.5: coulomb excitation, knockout reaction Ge array forward angles, ε γ ~5% - stopped beam experiments: isomers, beta and particle decay Ge array spherical close geometry ε γ ~15%

4 First scattering experiments 2003-2005: Coulomb excitation, One-, two-neutron knock-out Ge Cluster beam Target chamber CATE RISING  -array for fast beams RISING  -array for fast beams Ge Miniball Typically: 100MeV/u, ε  =0.06, ∆E  /E  =0.02

5 Relativistic Coulomb excitation of nuclei towards 100 Sn 112,108 Sn secondary beam with ~150MeV/u Au – Coulex target A. Banu, PhD thesis, PR C72, 061305(R) (2005) 108 Sn B(E2:2 + → 0 + ) EXP: 15.1 (3.3) W.u. TH1: 11.2 W.u. Morten Hjorth-Jensen TH2: 11.5 W.u. Frederic Nowacki 2004: J. Cederkäll et al., REX-ISOLDE, 110 Sn 2005: MSU, K.Starosta et al. 106-112 Sn asymmetry: p-h excitation? N=64 subshell closure? M. Hjorth-Jensen, ν(d 5/2 g 7/2 s 1/2 h 11/2 ), e ν = 1e 2003

6 Sn chain: Enhanced B(E2) systematics towards 100 Sn Shell Model: F. Nowacki et al., ν(d 5/2 g 7/2 s 1/2 h 11/2 ), e ν = 0.5e, π(g 9/2 g 7/2 d 5/2 d 3/2 s 1/2 ), e π = 1.5e πν monopoles tuned to πESPEs and Z=50 shell gap GSI RISING P. Doornenbal et al., PRC(R) in print A. Banu et al, PRC 72 061305(R) 2005 J. Cederkäll et al., PRL98, 172501(2007) A. Ekström et al., PRL 101, 012502(2008) C. Vaman et al., PRL 99, 162501(2007),

7 A,Z event-by-event ID Time correlation ns - min Rate < 1 ion/hour Alignment → g, Q moment + prompt  flash isomeric ratio  ray sequence spin-parity assignment - +-

8 RISING: Stopped beams Convenor: P. H. Regan, University of Surrey 100 Sn 56 Ni 132 Sn 208 Pb 62 Ga 86 Tc, 82 Nb 54 Ni, 50 Fe 108 Zr 130 Cd, 131 In 204 Pt, 205 Au Isomer scans  Decay measurement P. H. Regan D. Rudolph A. Gadea, A.Algora B. Rubio, J. Fujita, W. Gelletly T. Faestermann A. Bruce A. Jungclaus, M. Pfutzner, M.Gorska P.H. Regan, J. Benliure, Zs. Podolyak Zs. Podolyak A. Blazhev, B. Wadsworth, P. Boutachkov, Zh. Liu N=Z N>Z

9 N=Z T z =0 T z =1 T z =-1 46 Ti 50 Cr 54 Fe 42 Ca Y.Fujita (Osaka), B.Rubio (IFIC-Valencia) and W.Gelletly (Surrey)‏ Isospin Symmetry ( 3 He,t)‏ at RCNP, Osaka stable targets Tz=+1 Y. Fujita et al., PRL95 (2005) 212501  + decay at RISING, GSI large Q  -valuesTz=-1 50 Fe 54 Ni 46 Cr 42 Ti N=Z

10 Y. Fujita et al., PRL95 (2005) 212501 Method and Results Direct reactions β Decay pattern X f β-decay T 1/2 Absolute B(GT) ‏ B(GT) distribution strength up to high excitation energies PRELIMINARY expectation T 1/2 =114(5)ms, F. Molina Dipl. Thesis

11 N=Z Sequential decay: 62 Ge (129ms) → 62 Ga (116ms) → 62 Zn (9h) (Q EC >9 MeV for both decays >99%  + -  + ) 62 Ge (129ms) → 62 Ga (116ms) → 62 Zn (9h) (Q EC >9 MeV for both decays >99%  + -  + ) F.Iachello IBM-4 Superallowed Fermi decay to the 0 + IAS (g.s.) in 62 Zn: Nuclear test of the unitarity of the CKM matrix (V 2 ud from fermi  -decay) B.Blank et al. PRC 69 (2004) 015502 Structure of low lying states in 62 Ga Fermi + GT  -decay Proton-Neutron pairing effects in beta decay A. Gadea, A. Algora et al.,

12 Z32 31 30 2.00 1.95 2.052.10 1.90 A/Z 62 Ge Very weak branch to the 1 + S=1 571 keV 62 Ga PRELIMINARY No p-n pairing effects observed in the  -decay of 62 Ge A. Gadea, A. Algora et al., I. Petermann, G. Martines-Pinedo, K. Langnke, E. Caurier, EPJ A34 319 (2007)

13 Techniques – Z vs A/Q plot Preliminary!! Prelim estimate > 2000 96 Cd ions ZZ A/Q → 96 Cd B. Wadsworth et al., rp-proc waiting point

14 Expected Known Paestum 2003

15 98 48 Cd 50 100 50 Sn 50 Core excited states in large scale shell model A. Blazhev et al., PRC 69, 064304 (2004) V.I.Isakov, K.I. Erokhina Phys.At.Nucl. No.8,1431(2002). F. Nowacki, priv. comm..

16 rp process path ● @ T < 10 9 Kelvin when photodisintegration lifts (p,  ) – ( ,p) equilibrium ● MED of several 100 keV will influence the proton capture appreciably End of rp path near 100 Sn due to fast  decay beyond the double shell closure @Z=N=50 100 Sn shell structure decisive for ß + /EC decay (Gamow-Teller) and waiting points From: H. Grawe, K. Langanke, G. Martínez-Pinedo, Rep.Progr.Phys. 70,1525 (2007)

17 M. Górska et al., Proc. ENPE99, AIP CP495 (2000) 217 M. Hjorth-Jensen et al., Phys. Rep. 261 (1995) 125 a πν interaction tuned for the model space 88 Sr,  (p 1/2,g 9/2 ) (d 5/2, g 7/2, d 3/2, s 1/2, h 11/2 ) gives the correct description of the evolution of SPEs Tensor interaction monopole νh 11/2 – πg 9/2, νg 7/2 – πg 9/2 T. Otsuka et al., PRL 95, 232502 (2005) EXP: h 11/2 <30% spectroscopic strength very old measurements 100 Sn region h 11/2 <30% spectroscopic strength M. Górska et al., Proc. ENPE99, AIP CP495 (2000) 217 M. Hjorth-Jensen et al., Phys. Rep. 261 (1995) 125 and priv. comm. 100 Sn region New ! h 11/2 ›50% spectroscopic strength

18 M1 conversion M1 E2 Decay scheme (shell model) Decay scheme M. Karny et al. EPJA 27, 129 (2006) 100,102 Sn ß + /EC decay I  = 6 + isomerism 1472 1969+  1969 100 49 In 51 102 49 In 53 100 50 Sn 50 102 50 Sn 52 GT

19 Particle identification spectrum 100 Sn T.Faestermann et al.

20 In Sn Te Sb Cd Ag Pd Rh Ru 100 Sn setting T.Faestermann analysis: K.Eppinger, C.Hinke, TU München Gamow-Teller decay in 100 Sn

21 100 Sn setting check : 98 Cd 0+0+ 8+8+ 6+6+ 4+4+ 2+2+ 0 1395 2083 2281 2428 12+ 6635 147 198 688 1395 4207 s.e. d.e. new!?!

22 Langanke, K. & Martínez-Pinedo, G. Rev. Mod. Phys. 75, 819-862 (2003) 2+:Kautzsch, T. et al. Eur. Phys. J. A 9, 201-206 (2000)  Dillman et al., PRL, 91, 162503 (2003) Astrophysics relevance for n-rich nuclei 204 Pt 130 Cd 98 Cd

23 Indirect evidence for a N=82 shell quenching Kautzsch et al., Eur. Phys. J. A9 (2000) 201 indication from ß-decay studies at ISOLDE Can the anomalous behaviour of 2 + energies in the Cd isotopes towards N=82 be attributed to a change in the N=82 shell gap ?

24 130 Cd from fission and fragmentation Lucia Caceres PhD theses A. Jungclaus et al., PRL 99, 132501 (2007)  -coincidences 130 Cd

25 100 Sn vs 132 Sn N=50 TBME scaled by (88/132) 1/3 to N=82 SPE from 99 In and 131 In, respectively No dramatic shell quenching! B(E2) = 1.3(4) 1.45 (2.0) 1.2 1.1/1.3(2) WU A. Blazhev et al., PRC 69, 064304 (2004) A. Jungclaus et al., PRL 99, 132501 (2007)  (p 1/2,g 9/2 )  (s,d,g 7/2,h 11/2 ) H. Grawe Ir=27% Ir=13%

26 131 In spectra M.G., L. Caceres et al., submitted to PLB Z=49

27 E4: ≤ 1.6 2.4 WU Shell model : p 2p 1/2,1g 9/2,1g 7/2,2d 5/2 n 3s 1/2,1h 11/2,2d 3/2,2f 7/2, (1h 9/2 ) 1p1h excitations only ! 132 Sn single particle / hole energies Two-body interaction from one major shell higher at 208 Pb PRC 44, 233 (1991) scaled by A -1/3 and for orbital overlap N=82 gap at Cd:4.33 MeV vs. 4.94 MeV at Sn More precisely...

28 The solar r-process abundance problem The abundance deficiency (´´trough´´) is due to the changing slope in the neutron separation energy S 2n (´´saddle point structure´´) in some mass formulae. From: H. Grawe, K. Langanke, G. Martínez-Pinedo, Rep. Progr. Phys. 70,1525 (2007) Depletion of progenitors ! ´´trough´´ ´´saddle point´´

29 Monopole evolution of the N=82 gap

30 Shell quenching for very n-rich nuclei Potential shape: Wood Saxon (WS) → Harmonic Oscillator (HO) T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358 (1997) 169 stable nucleus neutron rich nucleus need for intense radioactive nuclear beams

31 Conclusion: ● Fragmentation + fission of relativistic beams + FRS + RISING ● Precision spectroscopy of exotic nuclei → tuning of effective NN interaction ● Monopoles determine shell evolution ● Nuclear structure and astrophysics Future : ● FAIR + Super-FRS + HISPEC/DESPEC → intensity, acceptance,  efficiency, selectivity ● Modern effective NN interactions, SM techniques NEUTRON DETECTOR GE γ-ARRAY RADIOACTIVE BEAM HISPEC DESPEC (fast, slow beams) (stopped beams) HISPEC DESPEC (fast, slow beams) (stopped beams)

32 Collaboration A.Algora(Valencia), W.Gelletly(Surrey), A.Gadea (Legnaro), Y.Fujita(Osaka), B. Rubio(Valencia), K.Langanke, G. Martinez-Pinedo, K. Sieja(GSI), F. Nowacki (Strasbourg), P.Regan(Surrey), G. Neyens(KU Leuven), H. Grawe (GSI), J. Tostevin (Surrey), P. Boutachkov(GSI), A. Blazhev (Köln), T. Faesterman(Munich), B. Wadsworth(York), Zh. Liu(Edinburg), L.Caceres (GSI/Madrid), K. Eppinger, C. Hinke (TU Munich), F.G. Molina(Valencia), A. Garnsworthy(Surrey/T), A. Banu(GSI), A. Jungclaus (Madrid), M. Pfützner (Warsaw), Zs. Podolyak(Surrey), S. Pietri(Surrey/GSI), P. Doornenbal(GSI/RIKEN), N.Brown(Köln), T. Brock (York), S. Steer(Surrey), G. Farrelly(Surrey) RISING/GSI group: H.J. Wollersheim, J.Gerl, P. Bednarczyk, P. Boutachkov, C. Domingo, J. Grebosz, I. Kojoharov, H. Schaffner, R. Hoischen(GSI/LUND)... FRS group: H. Weick, H. Geissel, Y. Litvinov, Ch. Nociforo.....and many others within the RISING collaboration


Download ppt "CEA Saclay CSNSM Orsay GANIL Caen IPN Orsay Univ. Surrey CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. York FZ Juelich."

Similar presentations


Ads by Google