Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)

Similar presentations


Presentation on theme: "PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)"— Presentation transcript:

1 PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10) j.billowes@manchester.ac.uk These slides at: www.man.ac.uk/dalton/phys30101 Lecture 5

2 Plan of action 1.Basics of QM 2.1D QM Will be covered in the following order: 1.1 Some light revision and reminders. Infinite well 1.2 TISE applied to finite wells 1.3 TISE applied to barriers – tunnelling phenomena 1.4 Postulates of QM (i) What Ψ represents (ii) Hermitian operators for dynamical variables (iii) Operators for position, momentum, ang. Mom. (iv) Result of measurement 1.5 Commutators, compatibility, uncertainty principle 1.6 Time-dependence of Ψ

3 Ψ = general solution to TDSE u, u n = time-independent part of Ψ ψ = general wavefunction whose time-dependence is not being considered φ, φ n = eigenfunction of an operator, not necessarily the energy operator (Hamiltonian)

4 Dynamical variable = a measurable quantity (position, momentum, angular momentum, energy). Ĥ Ĵ ĴzĴz Energy (KE + PE) Angular momentum (orbital + spin) Z-component of angular momentum

5

6 Summary of postulates 1.A quantum system has a wavefunction associated with it. 2.When a measurement is made, the result is one of the eigenvalues of the operator associated with the measurement. 3.As a result of the measurement the wavefunction “collapses” into the corresponding eigenfunction. 4.The probability of a particular outcome equals the square of the modulus of the overlap between the wavefunction before and after the measurement.


Download ppt "PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)"

Similar presentations


Ads by Google