Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT

Similar presentations


Presentation on theme: "Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT"— Presentation transcript:

1 Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT
Israel Science Foundation Workshop Diffusion, Solvation and Transport of Protons in Complex and Biological Systems Hilton Eilat Queen of Sheba Hotel, January 13-17, 2008 Organizers: E. Pines, N. Agmon, M. Gutman and D. Huppert. Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT Justin Kim, Yinghua Wu, Xin Chen and Victor S. Batista Department of Chemistry, Yale University, New Haven, CT Funding: NSF CHE NSF ECCS NIH 2R01-GM DOE DE-FG02-07ER15909 US-Israel BSF Sloan Fellowship Camillie Dreyfus Teacher Scholar Award NSF ECS Research Corporation Innovation Award RI0702 ACS PRF G6

2 Ultrafast Excited State Intramolecular Proton Transfer in HBT
E. T. J. Nibbering, H. Fidder and E. Pines Annu. Rev. Phys. Chem. (2005) 56:337-67 Ultrafast Excited State Intramolecular Proton Transfer in HBT Transient appearance of the C=O stretching mode of the keto*-state of HBT after excitation of the enol → enol* transition. IVR~ 750 fs, 15 ps ~50 fs nm

3 Time-Sliced Simulations of Quantum Processes

4 MP/SOFT Method Trotter Expansion
Wu,Y.; Batista, V.S. J. Chem. Phys. (2003) 118, 6720 Wu,Y.; Batista, V.S. J. Chem. Phys. (2003) 119, 7606 Wu,Y.; Batista, V.S. J. Chem. Phys. (2004) 121, 1676 Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. (2005) 122, 64102 Wu,Y.; Herman, M.F.; Batista, V.S. J. Chem. Phys. (2005) 122, Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, Chen, X.; Batista, V.S. J. Chem. Phys. (2006) 125, Chen, X.; Batista, V.S. J. Photochem. Photobiol. (2007) 190, 274

5 Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)

6

7

8 Fixed Point Self-Consistent Contraction Mapping

9 Computation of Observables
Absorption Spectrum: Time dependent reactant population:

10 Reaction Surface 69-dimensional Model
V(r1,r2,z) = V0(r1,r2) + 1/2 [z- z0(r1,r2)] F(r1,r2) [z-z0(r1,r2)] r1 V0 : Reaction surface r2 r1,r2 : reaction coordinates z0 : ab initio geometries F : ab initio force constants

11 Reaction Surface V0(r1,r2)
Energy (kcal/mol) ENOL KETO CCC bend. angle (degrees) OH bond length (a.u.) S1 Energy (kcal/mol) S0 CCC bend. angle (degrees) OH bond length (a.u.)

12 Ultrafast Charge Redistribution in HBT
ESIPT or ESIHT ? Ultrafast Charge Redistribution in HBT t=600 fs t=700 fs t=900 fs t=500 fs t=800 fs t=400 fs t=50 fs t=100 fs t=200 fs t=300 fs t=0 fs

13 t = 50 fs ESIPT in HBT: 69-Dimensional MP/SOFT Wavepacket Propagation
PR(t), (MP/SOFT) PR(t), (TDSCF) Tr [2(t)], (MP/SOFT) t = 50 fs

14 UV-Vis Photoabsorption Spectrum of HBT
MP/SOFT spectrum Experiments: Rini M,KummrowA, Dreyer J, Nibbering ETJ, Elsaesser T Faraday Discuss. 122:27–40 Rini M, Dreyer J, Nibbering ETJ, Elsaesser T Chem. Phys. Lett. 374:13–19

15 Ultrafast Excited State Intramolecular Proton Transfer in HBT
t = 0 fs IR - S0 (Calc.) Wavenumber [cm-1] t = 500 fs IR - S1 (Calc.) Wavenumber [cm-1]

16 Infrared spectra of HBT
IR - S1 (Calc.) IR Intensity Wavenumber [cm-1] IR - S0 (Calc.) IR Intensity Wavenumber [cm-1] IR - S0 (Exp.) IR Intensity Wavenumber [cm-1]

17 Transient infrared spectra of HBT
Experimental Theoretical Wavenumber [cm-1] Wavenumber [cm-1] Experiments: Rini M,KummrowA, Dreyer J, Nibbering ETJ, Elsaesser T Faraday Discuss. 122:27–40 Rini M, Dreyer J, Nibbering ETJ, Elsaesser T Chem. Phys. Lett. 374:13–19

18 ESIPT in the keto-enolic tautomerization of 2-(2’-hydroxyphenyl)-oxazole (HPO).
Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, Changes in hybridization and connectivity Classical Dynamics (HPMO) Vendrell, O.; Moreno, M.; Lluch J.M.; Hammes-Schiffer, S. J. Phys. Chem. B 108, 6745 (2004) Quantum Dynamics (7-d simulation, related ESIPT system) Petkovic, M.; Kühn, O. J. Phys. Chem. A 107, 8458 (2003) SC-IVR (HPO) Guallar, V.; Batista, V.S.; Miller, W.H. J. Chem. Phys. 113, 9510 (2000) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, (2002) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, (2002)

19 CASSCF Reaction Surface Potential V0(r1,r2)

20 UV-Vis Absorption Spectrum of 2-2’-(hydroxyphenyl)-oxazole (HPO)
Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, UV-Vis Absorption Spectrum of 2-2’-(hydroxyphenyl)-oxazole (HPO) HPMO in n-hexane Douhal et.al. JPC 100, (1997) 35-dimensional wave-packet propagation

21 Time-Dependent Reactant (enol) Population
Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, Guallar, V.; Batista, V.S.; Miller, W.H. J. Chem. Phys. 113, 9510 (2000) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, (2002) Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, (2002) Time-Dependent Reactant (enol) Population Femtosecond fluorescent transient at 420nm for HPMO in 3-methylpentane JPC 102,1657 (1998) Zewail, Fiebig and co-workers

22 Decoherence and Recoherence Dynamics
HK SC-IVR vs. MP/SOFT [1] [2] [1] Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, [2] Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, (2002)

23 Coherent-Control of the keto-enolic isomerization in HPO
Contour plot of the percentage product yield for bichromatic coherent-control at 100 fs after photoexcitation of the system, as a function of the laser controllable parameters. Batista, V.S.; Brumer, P. Phys. Rev. Lett. 89, (2002)

24 Nonadiabatic Propagation
Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. (2005) 122, 64102 Chen, X.; Batista, V.S. J. Chem. Phys. (2006) 125, Nonadiabatic Propagation

25 MP/SOFT Nonadiabatic Propagation

26 Nonadiabatic Dynamics of Pyrazine S1/S2 Conical Intersection
Chen,X.; Batista, V.S. J. Chem. Phys. (2006) 125, Nonadiabatic Dynamics of Pyrazine S1/S2 Conical Intersection Chen,X.; Batista, V.S. J. Chem. Phys. (2006) in prep. Benchmark Calcs.: 4-mode model

27 Nonadiabatic Dynamics of Pyrazine S1/S2 Conical Intersection
Chen,X.; Batista, V.S. J. Chem. Phys. (2006) 125, Nonadiabatic Dynamics of Pyrazine S1/S2 Conical Intersection Benchmark Calcs.: 24-mode model

28 Benchmark Calcs.: 24-mode model

29 The Primary Step in Vision cis/trans isomerization in visual rhodopsin
Flores SC and Batista VS, J. Phys. Chem. B (2004) 108: Gascon JA, Batista VS, Biophys. J. (2004) 87: Gascon JA, Sproviero EM, Batista VS, J. Chem. Theor. Comput. (2005) 1: Gascon JA, Sproviero EM, Batista VS, Acc. Chem. Res. (2006) 39, Chen X and Batista VB, J. Photochem. Photobiol. (2007) 190,

30 Empirical model (G. Stock)

31 Time dependent wavepacket undergoing nonadiabatic dynamics at the
conical intersection of S1/S0 potential energy surfaces Xin Chen and Victor S. Batista. J. Photochem. Photobiol. (2007) 190, 274

32 Time dependent reactant population
MP/SOFT‡ TDSCF* 0.67 Ptrans(S0) Pcis(S1) Time, fs ‡Chen X, Batista VS; J. Photochem. Photobiol. (2007) 190, 274 *Flores SC and Batista VS, J. Phys. Chem. B (2004) 108:

33 Isomerization coordinate,
Quantum interference of molecular wavepackets associated with indistinguishable pathways to the same target state Flores SC; Batista VS, J. Phys. Chem. B 108: (2004) Batista VS; Brumer P, Phys. Rev. Lett. 89, (2002) | j > | k > Isomerization coordinate,

34 Bichirped Coherent Control Scenario
CR = CR= Bichirped Coherent Control Scenario Flores SC; Batista VS, J. Phys. Chem. B (2004) 108: Chirped Pump Pulses (Wigner transformation forms)

35 Impulsive Stimulated Raman Scattering
Energy S1 S0 Reaction coordinate (Stretch. Coord.) NC:

36 Exact Quantum Dynamics Simulations (t=218 fs, CR=212 fs2)
Excited State S1 Ground State S0 cis trans

37 Exact Quantum Dynamics Simulations (t=218 fs, CR=-146 fs2)
Excited State S1 Ground State S0 cis trans

38 Bichirped Coherent Control Maps (1.2 ps)
Pulse Relative Phases Pulse Relative Intensities

39 Thermal Correlation Functions
Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, (2005) Time-Dependent Boltzmann Ensemble Averages

40 Bloch Equation: MP/SOFT Integration
Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, (2005) Bloch Equation: MP/SOFT Integration Partition Function Boltzmann Matrix:

41 Position-Position Correlation Function
Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, (2005) Position-Position Correlation Function

42 Conclusions We have introduced the MP/SOFT method for time-sliced simulations of quantum processes in systems with many degrees of freedom. The MP/SOFT method generalizes the grid-based SOFT approach to non-orthogonal and dynamically adaptive coherent-state representations generated according to the matching-pursuit algorithm. The accuracy and efficiency of the resulting method were demonstrated in simulations of excited-state intramolecular proton transfer in HPO and HBT, as modeled by multidimensional ab initio reaction surface Hamiltonians, as well as in benchmark simulations of nonadiabatic quantum dynamics in pyrazine. Further, we have extended the MP/SOFT method for computations of thermal equilibrium density matrices (equilibrium properties of quantum systems), finite temperature time-dependent expectation values and time-correlation functions. The extension involves solving the Bloch equation via imaginary-time propagation of the density matrix in dynamically adaptive coherent-state representations, and the evaluation of the Heisenberg time-evolution operators through real-time propagation.

43 Acknowledgments Thank you ! NSF CHE-0345984 NSF ECCS-0725118
NIH 2R01-GM DOE DE-FG02-07ER15909 US-Israel BSF Sloan Fellowship Camillie Dreyfus Teacher Scholar Award NSF ECS Research Corporation Innovation Award RI0702 ACS PRF G6 DOE NERSC Allocation of Supercomputer Time Workshop Organizers: E. Pines, N. Agmon, M. Gutman and D. Huppert. Thank you !


Download ppt "Ultrafast Excited State Intramolecular Proton Transfer in HPO and HBT"

Similar presentations


Ads by Google