Download presentation

Presentation is loading. Please wait.

2
EE365 Adv. Digital Circuit Design Clarkson University Lecture #2 Boolean Laws and Methods

3
Boolean algebra a.k.a. “switching algebra” –deals with boolean values -- 0, 1 Positive-logic convention –analog voltages LOW, HIGH --> 0, 1 Signal values denoted by variables (X, Y, FRED, etc.) Rissacher EE365Lect #2

4
Boolean operators Complement:X (opposite of X) AND:X Y OR:X + Y binary operators, described functionally by truth table. Rissacher EE365Lect #2

5
More definitions Literal: a variable or its complement –X, X, FRED, CS_L Expression: literals combined by AND, OR, parentheses, complementation –X+Y –P Q R –A + B C –((FRED Z) + CS_L A B C + Q5) RESET Equation: Variable = expression –P = ((FRED Z) + CS_L A B C + Q5) RESET Rissacher EE365Lect #2

6
Logic symbols Rissacher EE365Lect #2

7
Theorems Rissacher EE365Lect #2

8
More Theorems Rissacher EE365Lect #2

9
Duality Swap 0 & 1, AND & OR –Result: Theorems still true –Note duals in previous 2 tables (e.g. T6 and T6’) –Example: Rissacher EE365Lect #2

10
N-variable Theorems Most important: DeMorgan theorems Rissacher EE365Lect #2

11
DeMorgan Symbol Equivalence Rissacher EE365Lect #2

12
Likewise for OR Rissacher EE365Lect #2

13
DeMorgan Symbols Rissacher EE365Lect #2

14
Even more definitions Product term –WX’Y Sum-of-products expression –(WX’Y)+(XZ)+(W’X’Y’) Sum term –A+B’+C Product-of-sums expression –(A+B’+C)(D’+A’)(D+B+C) Normal term –No variable appears more than once –(WX’Y)+(AZ)+(B’C’) Minterm (n variables) Maxterm (n variables) Rissacher EE365Lect #2

15
Minterm An n-variable minterm is a normal product term with n literals There are 2 n possibilities 3-variable example: X’Y’Z or Σ X,Y,Z (1) A minterm is a product term that is 1 in exactly one row of the truth table: Rissacher EE365Lect #2 XYZF 0000 0011 0100 0110 1000 1010 1100 1110 new notation

16
Maxterm An n-variable maxterm is a normal sum term with n literals There are 2 n possibilities 3-variable example: X’+Y’+Z or Л X,Y,Z (6) A maxterm is a sum term that is 0 in exactly one row of the truth table: Rissacher EE365Lect #2 XYZF 0001 0011 0101 0111 1001 1011 1100 1111 new notation

17
Truth table vs. minterms & maxterms Rissacher EE365Lect #2

18
Combinational analysis Rissacher EE365Lect #2

19
Signal expressions Multiply out: F = ((X + Y) Z) + (X Y Z) = (X Z) + (Y Z) + (X Y Z) Rissacher EE365Lect #2

20
New circuit, same function Rissacher EE365Lect #2 F = ((X + Y) Z) + (X Y Z) = (X Z) + (Y Z) + (X Y Z)

21
“Add out” logic function Circuit: Rissacher EE365Lect #2

22
Shortcut: Symbol substitution Rissacher EE365Lect #2

23
Different circuit, same function Rissacher EE365Lect #2

24
Practice Rissacher EE365Lect #2 Convert the following function into a POS: F = ((X + Z) Y) + (X’ Z’ Y’)

25
Convert the following function into a POS: F = ((X + Z) Y) + (X’ Z’ Y’) F = (X + Z + X’) (X + Z + Z’) (X + Z + Y’) (Y + X’) (Y + Z’) (Y + Y’) F = 1 1 (X + Z + Y’) (Y + X’) (Y + Z’) 1 F = (X + Z + Y’) (Y + X’) (Y + Z’) Practice Rissacher EE365Lect #2

26
Next Class Rissacher EE365Lect #2 Building Combination Circuits Minimization Karnaugh Maps

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google