Download presentation
Presentation is loading. Please wait.
1
POSCO Lectures on Bainite Graduate Institute of Ferrous Technology Microstructure Mechanism Properties Superbainite
2
Problem: to design a bulk nanocrystalline steel which is very strong, tough, cheap ….
3
Brenner, 1956
4
Morinobu Endo, 2004
5
Claimed strength of carbon nanotube is 130 GPa Edwards, Acta Astronautica, 2000 Claimed modulus is 1.2 TPa Terrones et al., Phil. Trans. Roy. Soc., 2004
6
Equilibrium number of defects (10 20 ) Strength of a nanotube rope 2 mm long is less than 2000 MPa
7
Scifer, 5.5 GPa and ductile Kobe Steel
9
1 Denier: weight in grams, of 9 km of fibre 50-10 Denier Scifer is 9 Denier
10
Strength produced by deformation limits shape: wires, sheets... Strength in small particles relies on perfection. Doomed as size increases. Summary
11
Smallest size possible in polycrystalline substance?
13
Yokota & Bhadeshia, 2004
14
Thermomechanical processing limited by recalescence Summary Need to store the heat Reduce rate Transform at low temperature
15
Courtesy of Tsuji, Ito, Saito, Minamino, Scripta Mater. 47 (2002) 893. Howe, Materials Science and Technology 16 (2000) 1264.
16
Fine crystals by transformation Introduce work-hardening capacity Need to store the heat Reduce rate Transform at low temperature
18
0 200 400 600 800 00.20.40.60.811.21.4 Carbon / wt% Temperature / K Fe-2Si-3Mn-C wt% B S M S
19
1.E+00 1.E+04 1.E+08 00.511.5 Carbon / wt% Time / s Fe-2Si-3Mn-C wt% 1 month 1 year
20
wt% Low transformation temperature Bainitic hardenability Reasonable transformation time Elimination of cementite Austenite grain size control Avoidance of temper embrittlement
21
Temperature Time 1200 o C 2 days 1000 o C 15 min Isothermal transformation 125 o C-325 o C hours-months slow cooling Air cooling Quench AustenitisationHomogenisation
22
0 100 200 300 400 500 600 700 1.E+001.E+021.E+041.E+061.E+08 Time / s Temperature/ o C B S ~ 350 o C M S = 120 o C
24
X-ray diffraction results 0 20 40 60 80 100 200250300325 Temperature/ o C Percentage of phase bainitic ferrite retained austenite
26
50 nm
27
200 Å Caballero, Mateo, Bhadeshia
28
Low temperature transformation: 0.25 T/T m Fine microstructure: 20-40 nm thick plates Harder than most martensites (710 HV) Carbide-free Designed using theory alone
29
Hammond and Cross, 2004 Velocity km s -1 Stress / GPa
30
“more serious battlefield threats”
31
ballistic mass efficiency consider unit area of armour
32
Peet, Bhadeshia, 2004
33
200 Å Very strong Huge uniform ductility No deformation No rapid cooling No residual stresses Cheap Uniform in very large sections
34
Cobalt (1.5 wt%) and aluminium (1 wt%) increase the stability of ferrite relative to austenite Refine austenite grain size Faster Transformation
35
200 o C 250 o C 300 o C
36
original
37
Co
38
Co+Al
44
Need to improve mechanical stability of austenite
45
Hard Bainite 2500200015001000 20 40 60 80 100 120 140 160 180 Ultimate tensile strength / MPa Fracture toughness / MPa m 1/2 18 wt%Ni maraging steel QT
46
400 450 500 550 600 650 700 300350400450500550600650 Temperature / o C H V 30 min 60 min 24 h
47
Fe-0.34C-5.08Cr-1.43Mo-0.92V-0.4Mn-1.07Si wt%
48
450 C 1 h 670 HV o
49
600 C 1 h 530 HV o
50
600 C 24 h 370 HV o
51
excess carbon in solid solution in ferrite !
53
Peet, Babu, Miller, Bhadeshia, 2004
58
R. A. Jaramillo, S. S. Babu, G. M. Ludtka, R. A. Kisner, J. B. Wilgen, G. Makiewicz-Ludtka, D. M. Nicholson, S. M. Kelly, M. Murugananth and H. K. D. H. Bhadeshia Scripta Materialia, 52 (2004) 461-466. 30 Tesla field, 485 HV
59
0 200 400 600 800 00.20.40.60.811.21.4 Carbon / wt% Temperature / K Fe-2Si-3Mn-C wt% B S M S
60
Chatterjee & Bhadeshia, 2004 Fe-1.75C-Si-Mn wt% 2104
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.