Download presentation
Presentation is loading. Please wait.
1
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 The Game of Chaos Peter van Emde Boas ILLC-WINS-UvA Plantage Muidergracht 24 1018 TV Amsterdam peter@wins.uva.nl Evert van Emde Boas Lord Trevor Productions Franz Lisztlaan 5 2102 CJ Heemstede 35e Nederlands Mathematisch Congres Utrecht 19990408 © Wizards of the Coast, inc.
2
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 The Game of Chaos Sorry: it is a French Card Game of Chaos Sorcery Play head or tails against a target opponent. The looser of the game looses one life. The winner of the game gains one life, and may choose to repeat the procedure. For every repetition the ante in life is doubled. © Wizards of the Coast, inc.
3
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Magic; the Gathering Customizable card game: build a deck using a very large collection of available cards. Both players start out with 20 lives. Number of lives ≤ 0 means you have lost the duel. Move = playing land, casting a spell, combat,.... Attack: summoning creatures, damaging spells, damaging effects Defense: Blocking attacking creatures, protecting spells and effects Spells require Mana obtained by tapping lands or activating other Mana sources. Mana exists in 5 colors and a generic variant. Spells exist in the same 5 colors or a generic variant (artifacts) For almost every rule in the game there exists a card creating an exception against it when successfully cast.....
4
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Game Trees Root Thorgrim’s turn Urgat’s turn Terminal node Non Zero-Sum Game: Payoffs explicitly designated at terminal node 2 / 0 5 / -71 / 4 -1 / 4 3 / 1 -3 / 21 / -1
5
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Backward Induction 2 / 0 5 / -71 / 4 -1 / 4 3 / 1 -3 / 21 / -1 2 / 0 3 / 1 1 / 4 -3 / 2 1 / 4 At terminal nodes: Pay-off as explicitly given At Thorgrim’s nodes: Pay-off inherited from Thorgrim’s optimal choice At Urgat’s nodes: Pay-off inherited from Urgat’s optimal choice For strictly competitive games this is the Max-Min rule T TU U T UT T T U U U
6
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 CHANCE MOVES Chance moves controlled by another player (Nature) who is not interested in the result Nature is bound to choose his moves fairly with respect to commonly known probabilities Resulting outcomes for active players become lotteries
7
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Lotteries price prob. $3 1/3 $12 1/6 -$2 1/2 Expectation: 1/2. -2 + 1/6. 12 + 1/3. 3 = 2
8
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Compound Lottery price prob. $3 1/3 $12 1/6 -$2 1/2 $3 1/2 -$2 1/2 1/54/5 price prob. $3 7/15 $12 1/30 -$2 1/2 In compound lotteries all drawings are assumed to be independent
9
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Flipping a coin HEADSTAILS 1 / -1-1/ 1 1 / -1 hhtt 1/2 Expectation0 / 0 Thorgrim calls head or tails and Urgat flips the coin. Urgat’s move is irrelevant. Nature determines the outcome.
10
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 The Game Tree 0 1 3 -3 1 7 3-55-31-7 7-911-55-119-7 3 3 / -3 1/2 Denotes X Y Y X Thorgrim and Urgat both start with 5 lives
11
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 WHY UTILITY FUNCTIONS? Backward Induction is based on preferences rather than numbers Numbers as a tool for expressing preferences works OK when chance moves are absent We like to compute expected pay-off at chance nodes. Expected pay-off is sensitive to scaling Comparing complex lotteries is non-trivial
12
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Comparing Complex Lotteries Allais Example 010 0.010.890.10 0.890.110 0.900.1 $0M$1M$5M$0M$1M$5M $0M$1M$5M$0M$1M$5M ??
13
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Von Neumann-Morgenstern Utility Rational Players may be assumed to maximize the expectation of Something. Let’s call this Something Utility. Works nice for 2-outcome Lotteries: Something = chance of winning. So let’s reduce the n-outcome Lotteries to 2-outcome Compound Lotteries: Each intermediate outcome is “equivalent” to a suitable 2-outcome Lottery. The involved chance determines the Utility.
14
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Utility Intermediate Outcome WL p1-p p := u(L) = a u(W) = b u(D) = x a < b D Lot-1Lot-3 E E Lot-1 ( u ) = p.b + (1-p).a E E Lot-3 ( u ) = x If p is large (almost 1) : Lot-1 > Lot-3 For p small (almost 0) : Lot-1 < Lot-3 So for some intermediate p, say q: Lot-1 ≈ Lot-3 q q ≈ Lot-3 whence u(D) = q.b + (1-q).a !
15
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Utility Lottery = Expected Utility Outcomes p1p1 pnpn 11 nn ii pipi p1p1 pnpn pipi WL qiqi 1-q i WL p i q i 1- p i q i ≈ u(W) = 1, u(L) = 0, u( i ) = q i E p i q i = u(Lot-3) = p i u( i ) = E Lot-1 u(outcome) Lot-1 Lot-2 Lot-3 ≈
16
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Game of Chaos 3 3 / -3 1/2 Denotes X Y Y X Structure of the game tree independent of the choice of the utilities. u T,1 : u T,1 (n) = n u T,2 : u T,2 (n) = if n ≥ v opp then 1 elif n ≤ - v self then -1 else 0 fi u U,1 : u U,1 (n) = -n u U,2 : u U,2 (n) = if n ≥ v self then - 1 elif n ≤ - v opp then 1 else 0 fi © Wizards of the Coast, inc.
17
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Linear Utilities 0/00/0 -1/11/-1 3/-3 7/-7 -1/1 1/-1-3/3 -1/1 -9/9 3/-3 11/-11 5/-5 1/-1 -7/7 -11/119/-9 -5/5 Both Thorgrim and Urgat use utility u 1 Thorgrim and Urgat both start with 5 lives
18
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Go for the Kill! 0 1 3 -3 1 7 3-55-31-7 7-911-55-119-7 1/-1 0/00/0 0/00/0 0/00/0 0/00/0 0/00/00/00/00/00/0.5/-.5 -.5/.5 -1/1 Both Thorgrim and Urgat use utility u 2 Thorgrim and Urgat both start with 5 lives
19
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Mixed Utilities 0 1 3 -3 1 7 3-55-31-7 7-911-55-119-7 1/-7 1/-111/-71/-51/-9 1/-5 0/10/1 0/-1 0/00/0 0/10/1 0/-30/30/30/-1.5/-3.5/-1-.5/1 -.5/3 -1/9-1/5-1/11-1/7 -1/5-1/7 Thorgrim uses u 2 ; Urgat uses u 1 Thorgrim and Urgat both start with 5 lives
20
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Winning is all 0 1 3 -3 1 7 3-55-31-7 7-911-55-119-7 1/01/0 1/01/01/01/01/01/01/01/0 1/01/0.5/.5.75/.25.25/.75 0/10/10/10/10/10/10/10/1 0/10/10/10/1 Utilities: Thorgrim uses u 3,T : u 3.T (n) = if n ≥ v opp then 1 else 0 fi Urgat uses u 3,U : u 3.U (n) = if - n ≥ v opp then 1 else 0 fi.5/.5 Thorgrim and Urgat both start with 5 lives
21
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Unequal Start 0 1 3 -3 1 7 3-55-31-7 7-911-55-119-7 1/-1 0/00/0.25/-.25 0/00/0 0/00/0 0/00/00/00/0.5/-.5 -.5/.5 -1/1 Thorgrim: 6 lives Urgat: 4 lives utilities used u 2 3-13 -2111 17-13 -1/1 1/-1 -1/1 0/00/0.5/-.5 0/00/0.125/-.125
22
Game of Chaos: 35e Nederlands Mathematisch Congres Utrecht; 19990408 Thorgrim’s last stand 0 1 3 7 Thorgrim: 1 live Urgat: 6 lives Utilities: Thorgrim uses u 3 : u 3 (n) = if n ≥ v opp then 1 else 0 fi Urgat uses u 2 1/-10/10/1.5/0 0/10/1 0/10/1.25/.5.125/.75
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.