Presentation is loading. Please wait.

Presentation is loading. Please wait.

2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim.

Similar presentations


Presentation on theme: "2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim."— Presentation transcript:

1 2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)  If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2004 J.F Kurose and K.W. Ross, All Rights Reserved

2 2: Application Layer2 Chapter 2: Application layer r 2.1 Principles of network applications m app architectures m app requirements r 2.2 Web and HTTP r 2.4 Electronic Mail m SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P file sharing r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP r 2.9 Building a Web server

3 2: Application Layer3 P2P file sharing Example r Alice runs P2P client application on her notebook computer r Intermittently connects to Internet; gets new IP address for each connection r Asks for “Hey Jude” r Application displays other peers that have copy of Hey Jude. r Alice chooses one of the peers, Bob. r File is copied from Bob’s PC to Alice’s notebook: HTTP r While Alice downloads, other users uploading from Alice. r Alice’s peer is both a Web client and a transient Web server. All peers are servers = highly scalable!

4 2: Application Layer4 P2P: centralized directory original “Napster” design 1) when peer connects, it informs central server: m IP address m content 2) Alice queries for “Hey Jude” 3) Alice requests file from Bob centralized directory server peers Alice Bob 1 1 1 1 2 3

5 2: Application Layer5 P2P: problems with centralized directory r Single point of failure r Performance bottleneck r Copyright infringement file transfer is decentralized, but locating content is highly decentralized

6 2: Application Layer6 Query flooding: Gnutella r fully distributed m no central server r public domain protocol r many Gnutella clients implementing protocol overlay network: graph r edge between peer X and Y if there’s a TCP connection r all active peers and edges is overlay net r Edge is not a physical link r Given peer will typically be connected with < 10 overlay neighbors

7 2: Application Layer7 Gnutella Messages

8 2: Application Layer8 Gnutella: protocol Query QueryHit Query QueryHit Query QueryHit File transfer: HTTP r Query message sent over existing TCP connections r peers forward Query message r QueryHit sent over reverse path Scalability: limited scope flooding

9 2: Application Layer9 Gnutella Connection Setup

10 2: Application Layer10 Gnutella Message Header

11 2: Application Layer11 Gnutella Message Header (Cont.)

12 2: Application Layer12 Ping Message

13 2: Application Layer13 Pong Message

14 2: Application Layer14 Big-Endian vs. Little-Endian

15 2: Application Layer15 Query Message

16 2: Application Layer16 QueryHit Message

17 2: Application Layer17 QueryHit Message (cont.)

18 2: Application Layer18 Query Routing

19 2: Application Layer19 File Download

20 2: Application Layer20 Exploiting heterogeneity: Gnutella v. 2 r Each peer is either a supernode or assigned to a supernode. m TCP connection between peer and its group leader. m TCP connections between some pairs of group leaders. r Supernode tracks the content in all its children.

21 2: Application Layer21 Gnutella v. 2: Querying r On connection client updates its supernode with all its files r Client sends keyword query to its supernode r Supernode responds with matches: r Supernode forwards query to other supernodes r Client then selects files for downloading

22 2: Application Layer22 eMule

23 2: Application Layer23 eMule connection setup

24 2: Application Layer24 Connection startup

25 2: Application Layer25 File Search

26 2: Application Layer26 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail m SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P file sharing r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP r 2.9 Building a Web server

27 2: Application Layer27 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of transport service via socket API: m unreliable datagram m reliable, byte stream- oriented a host-local, application-created, OS-controlled interface (a “door”) into which application process can both send and receive messages to/from another application process socket Goal: learn how to build client/server application that communicate using sockets

28 2: Application Layer28 Socket-programming using TCP Socket: a door between application process and end- end-transport protocol (UCP or TCP) TCP service: reliable transfer of bytes from one process to another process TCP with buffers, variables socket controlled by application developer controlled by operating system host or server process TCP with buffers, variables socket controlled by application developer controlled by operating system host or server internet

29 2: Application Layer29 Socket programming with TCP Client must contact server r server process must first be running r server must have created socket (door) that welcomes client’s contact Client contacts server by: r creating client-local TCP socket r specifying IP address, port number of server process r When client creates socket: client TCP establishes connection to server TCP r When contacted by client, server TCP creates new socket for server process to communicate with client m allows server to talk with multiple clients m source port numbers used to distinguish clients (more in Chap 3) TCP provides reliable, in-order transfer of bytes (“pipe”) between client and server application viewpoint

30 2: Application Layer30 Stream jargon r A stream is a sequence of characters that flow into or out of a process. r An input stream is attached to some input source for the process, eg, keyboard or socket. r An output stream is attached to an output source, eg, monitor or socket.

31 2: Application Layer31 Socket programming with TCP Example client-server app: 1) client reads line from standard input ( inFromUser stream), sends to server via socket ( outToServer stream) 2) server reads line from socket 3) server converts line to uppercase, sends back to client 4) client reads, prints modified line from socket ( inFromServer stream) Client process client TCP socket

32 2: Application Layer32 Client/server socket interaction: TCP wait for incoming connection request connectionSocket = welcomeSocket.accept() create socket, port= x, for incoming request: welcomeSocket = ServerSocket() create socket, connect to hostid, port= x clientSocket = Socket() close connectionSocket read reply from clientSocket close clientSocket Server (running on hostid ) Client send request using clientSocket read request from connectionSocket write reply to connectionSocket TCP connection setup

33 2: Application Layer33 Example: Java client (TCP) import java.io.*; import java.net.*; class TCPClient { public static void main(String argv[]) throws Exception { String sentence; String modifiedSentence; BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); Socket clientSocket = new Socket("hostname", 6789); DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream()); Create input stream Create client socket, connect to server Create output stream attached to socket

34 2: Application Layer34 Example: Java client (TCP), cont. BufferedReader inFromServer = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); sentence = inFromUser.readLine(); outToServer.writeBytes(sentence + '\n'); modifiedSentence = inFromServer.readLine(); System.out.println ("FROM SERVER: " + modifiedSentence ); clientSocket.close(); } Create input stream attached to socket Send line to server Read line from server

35 2: Application Layer35 Example: Java server (TCP) import java.io.*; import java.net.*; class TCPServer { public static void main(String argv[]) throws Exception { String clientSentence; String capitalizedSentence; ServerSocket welcomeSocket = new ServerSocket(6789); while(true) { Socket connectionSocket = welcomeSocket.accept(); BufferedReader inFromClient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream())); Create welcoming socket at port 6789 Wait, on welcoming socket for contact by client Create input stream, attached to socket

36 2: Application Layer36 Example: Java server (TCP), cont DataOutputStream outToClient = new DataOutputStream (connectionSocket.getOutputStream()); clientSentence = inFromClient.readLine(); capitalizedSentence = clientSentence.toUpperCase() + '\n'; outToClient.writeBytes(capitalizedSentence); } Read in line from socket Create output stream, attached to socket Write out line to socket End of while loop, loop back and wait for another client connection

37 2: Application Layer37 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail m SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P file sharing r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP r 2.9 Building a Web server

38 2: Application Layer38 Socket programming with UDP UDP: no “connection” between client and server r no handshaking r sender explicitly attaches IP address and port of destination to each packet r server must extract IP address, port of sender from received packet UDP: transmitted data may be received out of order, or lost application viewpoint UDP provides unreliable transfer of groups of bytes (“datagrams”) between client and server

39 2: Application Layer39 Client/server socket interaction: UDP close clientSocket Server (running on hostid ) read reply from clientSocket create socket, clientSocket = DatagramSocket() Client Create, address ( hostid, port=x, send datagram request using clientSocket create socket, port= x, for incoming request: serverSocket = DatagramSocket() read request from serverSocket write reply to serverSocket specifying client host address, port number

40 2: Application Layer40 Example: Java client (UDP) Output: sends packet (TCP sent “byte stream”) Input: receives packet (TCP received “byte stream”) Client process client UDP socket

41 2: Application Layer41 Example: Java client (UDP) import java.io.*; import java.net.*; class UDPClient { public static void main(String args[]) throws Exception { BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); DatagramSocket clientSocket = new DatagramSocket(); InetAddress IPAddress = InetAddress.getByName("hostname"); byte[] sendData = new byte[1024]; byte[] receiveData = new byte[1024]; String sentence = inFromUser.readLine(); sendData = sentence.getBytes(); Create input stream Create client socket Translate hostname to IP address using DNS

42 2: Application Layer42 Example: Java client (UDP), cont. DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 9876); clientSocket.send(sendPacket); DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); clientSocket.receive(receivePacket); String modifiedSentence = new String(receivePacket.getData()); System.out.println("FROM SERVER:" + modifiedSentence); clientSocket.close(); } Create datagram with data-to-send, length, IP addr, port Send datagram to server Read datagram from server

43 2: Application Layer43 Example: Java server (UDP) import java.io.*; import java.net.*; class UDPServer { public static void main(String args[]) throws Exception { DatagramSocket serverSocket = new DatagramSocket(9876); byte[] receiveData = new byte[1024]; byte[] sendData = new byte[1024]; while(true) { DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); serverSocket.receive(receivePacket); Create datagram socket at port 9876 Create space for received datagram Receive datagram

44 2: Application Layer44 Example: Java server (UDP), cont String sentence = new String(receivePacket.getData()); InetAddress IPAddress = receivePacket.getAddress(); int port = receivePacket.getPort(); String capitalizedSentence = sentence.toUpperCase(); sendData = capitalizedSentence.getBytes(); DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, port); serverSocket.send(sendPacket); } Get IP addr port #, of sender Write out datagram to socket End of while loop, loop back and wait for another datagram Create datagram to send to client

45 2: Application Layer45 Chapter 2: Application layer r 2.1 Principles of network applications m app architectures m app requirements r 2.2 Web and HTTP r 2.4 Electronic Mail m SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P file sharing r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP r 2.9 Building a Web server

46 2: Application Layer46 Building a simple Web server r handles one HTTP request r accepts the request r parses header r obtains requested file from server’s file system r creates HTTP response message: m header lines + file r sends response to client r after creating server, you can request file using a browser (eg IE explorer) r see text for details

47 2: Application Layer47 Chapter 2: Summary r Application architectures m client-server m P2P m hybrid r application service requirements: m reliability, bandwidth, delay r Internet transport service model m connection-oriented, reliable: TCP m unreliable, datagrams: UDP Our study of network apps now complete! r specific protocols: m HTTP m FTP m SMTP, POP, IMAP m DNS r socket programming

48 2: Application Layer48 Chapter 2: Summary r typical request/reply message exchange: m client requests info or service m server responds with data, status code r message formats: m headers: fields giving info about data m data: info being communicated Most importantly: learned about protocols r control vs. data msgs m in-band, out-of-band r centralized vs. decentralized r stateless vs. stateful r reliable vs. unreliable msg transfer r “complexity at network edge”


Download ppt "2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim."

Similar presentations


Ads by Google