Download presentation
1
Ch14 Translation Messenger RNA Transfer RNA
Attachment of amino acids to tRNA The ribosome Initiation of translation Translation elongation Termination of translation Regulation of translation Translation-dependant regulation of mRNA and protein stability
2
Messenger RNA Polypeptide chains are specified by open-reading frames
Fig 14-1 Three possible reading frames of the E. coli trp leader sequence
3
Open reading frame (ORF):
a contiguous string of codons that specify a single protein; read in a particular frame (as set by the first codon) that is open to translation. ORF starts and ends at internal sites within the mRNA. Start codon in eukaryotes: AUG Stop codons: UAG, UGA, UAA Eukaryotic mRNAs almost always contain a single ORF, whereas prokaryotic mRNAs contain one or more ORF.
4
Polycistronic mRNA: mRNA that contain multiple ORF.
Monocistronic mRNA: mRNA that contain single ORF.
5
Fig 14-2 Structure of mRNA RBS: ribosome binding site
6
Prokaryotic mRNAs have a ribosome binding site that recruits the translational machinery
Ribosome binding site = Shine-Dalgarno sequence bp on the 5’ side of the start codon 2. Complementary to a sequence near the 3’ end of 16s rRNA.
7
Eukaryotic mRNAs are modified at their 5’ and 3’ ends to facilitate translation
5’ modifications: (1) Eukaryotic mRNAs recruit ribosomes using 5’ cap. 5’ cap: methylated G nucleotide that is linked to 5’ end of mRNA by 5’-5’ linkage 5’ cap recruits ribosome to the mRNA; the ribosome bound to mRNA moves in a 5’ to 3’ direction until it encounters a start codon (scanning). Kozak sequence (5’-G/ANNAUGG-3’): thought to interact to with initiator tRNA
8
3’ modifications: Poly-A tail enzymatically added by poly-A polymerase. enhance translation by promoting efficient recycling of ribosomes.
9
Transfer RNA tRNAs are adaptors between codons and amino acids
tRNA: between 75 to 95 ribonucleotides tRNA end at 3’-terminus with the sequence CCA, where the cognate amino acid is attached. Unusual bases are present in tRNA structure.
10
yU D Fig 14-3 A subset of modified nucleosides found in tRNA
11
tRNAs share a common secondary structure that resembles a cloverleaf
Fig cloverleaf representation of the 2nd structure of tRNA (1) The acceptor stem (2) yU loop: 5’-TyUCG-3’ (3) D loop (4) anticodon loop (5) variable loop: 3-21 bases
12
tRNAs have an L-shaped 3-D structure
Fig 14-5 Conversion between the cloverleaf and the actual 3-D structure of a tRNA
13
Attachment of amino acids to tRNA tRNAs are charged by the attachment of an amino acid to the 3’ terminal adenosine nucleotide via a high-energy acyl linkage Charged tRNA Uncharged tRNA
14
Aminoacyl tRNA synthetase charge tRNAs in two steps
Adenylylation of amino acid Fig 14-6
15
Transfer of adenylylated amino acid to tRNA: tRNA charging
16
tRNA synthetase recognize unique structural features of cognate tRNAs
Each aminoacyl tRNA synthetase attaches a single amino acid to one or more tRNAs isoaccepting tRNA tRNA synthetase recognize unique structural features of cognate tRNAs Fig 14-7
17
Fig 14-8 co-crystal structure of glutaminyl aminoacyl tRNA synthetase with tRNAgln
18
Aminoacyl-tRNA formation is very accurate
Fig 14-9 Some aminoacyl tRNA synthetases use an editing (as a molecular sieve) pocket to charge tRNAs with high fidelity
19
The ribosome is unable to discriminate between correctly and incorrectly charged tRNAs
Fig cysteinyl-tRNA charged with C or A
20
The Ribosome Rate of DNA replication: 200-1000 nt/sec
Rate of translation in prokaryotes: 2-20 amino acids/sec Rate of translation in eukaryotes: 2-4 amino acids/sec
21
In prokaryotes, the transcription and translation machineries are located in the same compartment.
Fig prokaryotic RNA polymerase and the ribosome at work on the same RNA
22
In eukaryotes, transcription happens in the nucleus while translation happens in the cytoplasm.
23
The ribosome is composed of a large and a small subunit
Fig sedimentation by ultracentrifugation to separate individual ribosome subunits and the full ribosomes. S: Svedberg (sedimentation velocity) determined by both size and shape.
24
Large subunit contains peptidyl transferase center (for formation of peptide bond)
Small subunit contains decoding center.
25
Fig 14-13 Composition of the prokaryotic and eukaryotic ribosomes.
26
The large and small subunits undergo association and dissociation during each cycle of translation
Fig Overview of the events of translation
27
Fig 14-15 An mRNA bearing multiple ribosomes is known as a polyribosome or a polysome.
28
New amino acids are attached to the C-terminus of the growing polypeptide chain
Peptides bonds are formed by transfer of the growing polypeptide chain from one tRNA to another
29
Fig 14-16 The peptidyl transferase reaction
The ribosome catalyzes a single chemical reaction: The formation of a peptide bond
30
Fig 14-17 two views of the ribosomes
Ribosomal RNAs are both structural and catalytic determinants of the ribosome. Most ribosomal proteins are on the periphery of the ribosome, while the functional core of ribosome is composed mostly from rRNA.
31
The ribosome had three binding sites for tRNA
Fig 14-18 A: for aminoacylated-tRNA P: for peptidyl-tRNA E: for exit
32
Channels through the ribosome allow the mRNA and growing polypeptide to enter and/or exit the ribosome (Fig 14-19) Fig The interaction between the A site and P site tRNAs and the mRNA within the ribosome.
33
Fig 14-21 The polypeptide exit center
34
The initiation of translation
Fig An overview of the events of translation initiation
35
Prokaryotic mRNAs are initially recruited to the small subunit by base-pairing to rRNA
Fig The 16S rRNA interacts with the RBS to position the AUG in the P site.
36
Initiator tRNA: fMet-tRNAifMet (base-pairs with AUG or GUG)
A specialized tRNA charged with a modified methionine binds directly to the prokaryotic small subunit Initiator tRNA: fMet-tRNAifMet (base-pairs with AUG or GUG) Deformylase removes the formal group during or after the synthesis Fig methionine and N-formyl methionine
37
Three initiation factors direct the assembly of an initiation complex that contains mRNAs and the initiator tRNA A model of initiation factor binding to the 30S ribosomal subunit. IF1: prevents tRNA from binding to A site IF2: a GTPase; interacts with initiator tRNA and IF1, and thus prevents further tRNA binding to small subunits. IF3: binds to small subunit and prevent it from reassociating with large subunit; essential for translation initiation.
38
Fig 14-25 A summary of translation initiation in prokaryotes
39
Eukaryotic ribosomes are recruited to the mRNA by the 5’ Cap
Fig assembly of the eukaryotic small ribosomal subunit and initiator tRNA onto the mRNA eIF4B: helicase; unwinding any RNA secondary structure
40
Fig 14-27 identification of the initiating AUG by the eukaryotic small ribosomal subunits
The start codon is found by scanning downstream from the 5’ end of the mRNA
41
uORF: short, upstream, open-reading frame, less than 10 amino acids long
42
IRES (internal ribosome entry site)
43
Translation initiation factors hold eukaryotic mRNAs in circles
Fig a model for the circularization of eukaryotic mRNA, through the interaction between eIF4G and poly-A binding protein.
44
Translation elongation
Fig summary of the steps of translation The mechanism of elongation is highly conserved between prokaryotes and eukaryotes.
45
Aminoacyl-tRNA are delivered to the A site by elongation factor EF-Tu.
Fig EF-Tu escorts aminoacyl-tRNA to the A site of the ribosome. The interaction between EF-Tu and factor binding site of large subunit triggers the GTPase of EF-Tu.
46
The ribosome uses multiple mechanisms to select against incorrect aminoacyl-tRNAs.
47
Minor groove interactions
48
The ribosome is a ribozyme: peptidyl transferase reaction is catalyzed by RNA, mainly 23S rRNA.
49
Peptide bond formation and the elongation factor EF-G drive translocation of the tRNAs and the mRNA
51
EF-G drives translocation by displacing the tRNA bound to the A site
Hybrid state of tRNA exposes factor-binding site; EF-G can only bind to ribosome by a GTP-bound form. EF-G drives translocation by displacing the tRNA bound to the A site
52
How does EF-G-GDP interact with the A site so effectively?
Fig 14-35 Left: EF-Tu-GDPNP-Phe-tRNA Right: EF-G-GDP
53
GDP has a lower affinity for EF-G than GTP
EF-Tu-GDP and EF-G-GDP must exchange GDP for GTP prior to participating in a new round of elongation GDP has a lower affinity for EF-G than GTP For EF-Tu, a GTP-exchange factor EF-Ts is required for the GDP-GTP exchange. A cycle of peptide bond formation consumes two molecules of GTP and one molecule of ATP Fig14-6
55
Termination of translation release factors terminate translation in response to stop codons
Release factors (RF) activates the hydrolysis of polypeptide from the peptidyl-tRNA Class I RF: recognizes stop codon Class II RF: stimulate dissociation of class I RF from ribosome Class I RF: prokaryotes: RF1 (UAG, UAA); RF2 (UGA, UAA) eukaryotes: eRF1 (UAG; UGA; UAA) Class II RF: regulated by GTP prokaryotes: RF3 eukaryotes: eRF3
56
Short regions of class I release factors recognize stop codons and trigger release of the peptidyl chain Model of a RF1 bound to the A site GGQ: involved in polypeptide hydrolysis; close to peptidyl-transferase center SPF: peptide anticodon; for interacting with stop codon
59
GDP-GTP exchange and GTP hydrolysis control the function of the class II release factor
Fig polypeptide release is mediated by two RF RF-3 has a higher affinity to GDP than to GTP
60
The ribosome recycling factor (RRF) mimics a tRNA
Fig RRF and EF-G combine to stimulate the release of tRNA and mRNA from a terminated ribosome. RRF is only associated with the large subunit of the A site.
61
Puromycin terminates translation by mimicing a tRNA in the A site.
62
Regulation of translation
Although the expression of most genes is regulated at the level of mRNA transcription, it is more effective for the cell to regulate gene expression at the level of translation. As with other types of regulation, translational control typically functions at the level of initiation.
63
Protein or RNA binding near the ribosome-binding site negatively regulates bacterial translation initiation
64
Regulation of prokayryotic translation: ribosomal proteins are translational repressors of their own synthesis
67
Global regulators of eukaryotic translation target key factors required for mRNA recognition and initiator tRNA ribosome binding
68
Spatial control of translation by mRNA-specific 4E-BPs
69
An iron-regulated, RNA-binding protein controls translation of ferritin
70
Translation of the yeast transcriptional activator Gcn4 is controlled by short upstram ORFs and ternary complex abundance Fig 14-48
71
Translation-dependent regulation of mRNA and protein stability
Being single-stranded, mRNAs are more susceptible to breakage. Such damaged mRNAs have the possibility of making incomplete or incorrect proteins.
72
The SsrA RNA rescues ribosomes that translate broken mRNAs
tmRNA: in prokaryotic cell, stalled ribosomes are rescued by a chimeric RNA (part tRNA and part mRNA) SsrA is a 457 nt tmRNA that includes a 3’ end strongly resembles tRNAala.
73
Fig 14-39 The tmRNA and SsrA rescue ribosomes stalled on prematurely terminated mRNAs.
How does the SsrA RNA bind to only stalled ribosomes?? Large size
74
Eukaryotic cells degrade mRNAs that are incomplete or that have premature stop codon
Fig 14-40
76
Exosome: 3’-5’ exonuclease
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.