Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 7: Trees Objectives:

Similar presentations


Presentation on theme: "Chapter 7: Trees Objectives:"— Presentation transcript:

1 Chapter 7: Trees Objectives:
Introduce general tree structure and Tree ADT Discuss the depth and height of trees Introduce the tree traversal algorithms Specialize to binary trees Implement binary trees with linked structure and array-list structure Introduce the Template Method Pattern CSC311: Data Structures

2 What is a Tree In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes with a parent-child relation Applications: Organization charts File systems Programming environments Computers”R”Us Sales R&D Manufacturing Laptops Desktops US International Europe Asia Canada Trees CSC311: Data Structures

3 Tree Terminology subtree Root: node without parent (A)
Internal node: node with at least one child (A, B, C, F) External node (a.k.a. leaf ): node without children (E, I, J, K, G, H, D) Ancestors of a node: parent, grandparent, grand-grandparent, etc. Depth of a node: number of ancestors Height of a tree: maximum depth of any node (3) Descendant of a node: child, grandchild, grand-grandchild, etc. Subtree: tree consisting of a node and its descendants A B D C G H E F I J K subtree Trees CSC311: Data Structures

4 Tree ADT We use positions to abstract nodes Generic methods:
integer size() boolean isEmpty() Iterator iterator() Iterator positions() Accessor methods: position root() position parent(p) positionIterator children(p) Query methods: boolean isInternal(p) boolean isExternal(p) boolean isRoot(p) Update method: object replace (p, o) Additional update methods may be defined by data structures implementing the Tree ADT Trees CSC311: Data Structures

5 Depth of a Node The depth of a node v in a tree T is defined as:
Algorithm depth(T, v) Input: Tree T and a node v Output: an integer that is the depth of v in T If v is the root of T then return 0 Else return 1 + depth(T, parent(v)) The depth of a node v in a tree T is defined as: If v is the root, then its depth is 0; Otherwise, its depth is one plus the depth of its parent Trees CSC311: Data Structures

6 Height of a Node The height of a node v in a tree T is defined as:
Algorithm height(T, v) Input: Tree T and a node v Output: an integer that is the height of v in T If v is an external of T then return 0 Else h0 for each child w of v in T do hmax(h, height(T,w)) return 1+h The height of a node v in a tree T is defined as: If v is an external, then its height is 0; Otherwise, its height is one plus the maximum height of its children Trees CSC311: Data Structures

7 Features on Height The height of a nonempty tree T is equal to the maximum depth of an external node of T Let T be a tree with n nodes, and let cv denote the number if children of a node v of T. The summing over the vertices in T, vcv=n-1. Trees CSC311: Data Structures

8 Preorder Traversal Algorithm preOrder(v) visit(v)
A traversal visits the nodes of a tree in a systematic manner In a preorder traversal, a node is visited before its descendants Application: print a structured document Algorithm preOrder(v) visit(v) for each child w of v preorder (w) 1 Make Money Fast! 2 5 9 1. Motivations 2. Methods References 6 7 8 3 4 2.1 Stock Fraud 2.2 Ponzi Scheme 2.3 Bank Robbery 1.1 Greed 1.2 Avidity Trees CSC311: Data Structures

9 Postorder Traversal Algorithm postOrder(v) for each child w of v
In a postorder traversal, a node is visited after its descendants Application: compute space used by files in a directory and its subdirectories Algorithm postOrder(v) for each child w of v postOrder (w) visit(v) 9 cs16/ 8 3 7 todo.txt 1K homeworks/ programs/ 1 2 4 5 6 h1c.doc 3K h1nc.doc 2K DDR.java 10K Stocks.java 25K Robot.java 20K Trees CSC311: Data Structures

10 Binary Trees Applications:
arithmetic expressions decision processes searching A binary tree is a tree with the following properties: Each internal node has at most two children (exactly two for proper binary trees) The children of a node are an ordered pair We call the children of an internal node left child and right child Alternative recursive definition: a binary tree is either a tree consisting of a single node, or a tree whose root has an ordered pair of children, each of which is a binary tree A B C F G D E H I Trees CSC311: Data Structures

11 Arithmetic Expression Tree
Binary tree associated with an arithmetic expression internal nodes: operators external nodes: operands Example: arithmetic expression tree for the expression (2  (a - 1) + (3  b)) + - 2 a 1 3 b Trees CSC311: Data Structures

12 Decision Tree Binary tree associated with a decision process
internal nodes: questions with yes/no answer external nodes: decisions Example: dining decision Want a fast meal? Yes No How about coffee? On expense account? Yes No Yes No Starbucks Spike’s Al Forno Café Paragon Trees CSC311: Data Structures

13 BinaryTree ADT The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT Additional methods: position left(p) position right(p) boolean hasLeft(p) boolean hasRight(p) Update methods may be defined by data structures implementing the BinaryTree ADT Trees CSC311: Data Structures

14 Properties of Proper Binary Trees
e = i + 1 n = 2e - 1 h  i h  (n - 1)/2 e  2h h  log2 e h  log2 (n + 1) - 1 Notation n number of nodes e number of external nodes i number of internal nodes h height Trees CSC311: Data Structures

15 Inorder Traversal Algorithm inOrder(v) if hasLeft (v)
In an inorder traversal a node is visited after its left subtree and before its right subtree Application: draw a binary tree x(v) = inorder rank of v y(v) = depth of v Algorithm inOrder(v) if hasLeft (v) inOrder (left (v)) visit(v) if hasRight (v) inOrder (right (v)) 6 2 8 1 4 7 9 3 5 Trees CSC311: Data Structures

16 Print Arithmetic Expressions
Algorithm printExpression(v) if hasLeft (v) print(“(’’) inOrder (left(v)) print(v.element ()) if hasRight (v) inOrder (right(v)) print (“)’’) Specialization of an inorder traversal print operand or operator when visiting node print “(“ before traversing left subtree print “)“ after traversing right subtree + - 2 a 1 3 b ((2  (a - 1)) + (3  b)) Trees CSC311: Data Structures

17 Evaluate Arithmetic Expressions
Specialization of a postorder traversal recursive method returning the value of a subtree when visiting an internal node, combine the values of the subtrees Algorithm evalExpr(v) if isExternal (v) return v.element () else x  evalExpr(leftChild (v)) y  evalExpr(rightChild (v))   operator stored at v return x  y + - 2 5 1 3 Trees CSC311: Data Structures

18 Euler Tour Traversal +   2 - 3 2 5 1
Generic traversal of a binary tree Includes a special cases the preorder, postorder and inorder traversals Walk around the tree and visit each node three times: on the left (preorder) from below (inorder) on the right (postorder) + L R B 2 - 3 2 5 1 Trees CSC311: Data Structures

19 Template Method Pattern
Generic algorithm that can be specialized by redefining certain steps Implemented by means of an abstract Java class Visit methods that can be redefined by subclasses Template method eulerTour Recursively called on the left and right children A Result object with fields leftResult, rightResult and finalResult keeps track of the output of the recursive calls to eulerTour public abstract class EulerTour { protected BinaryTree tree; protected void visitExternal(Position p, Result r) { } protected void visitLeft(Position p, Result r) { } protected void visitBelow(Position p, Result r) { } protected void visitRight(Position p, Result r) { } protected Object eulerTour(Position p) { Result r = new Result(); if tree.isExternal(p) { visitExternal(p, r); } else { visitLeft(p, r); r.leftResult = eulerTour(tree.left(p)); visitBelow(p, r); r.rightResult = eulerTour(tree.right(p)); visitRight(p, r); return r.finalResult; } … Trees CSC311: Data Structures

20 Specializations of EulerTour
We show how to specialize class EulerTour to evaluate an arithmetic expression Assumptions External nodes store Integer objects Internal nodes store Operator objects supporting method operation (Integer, Integer) public class EvaluateExpression extends EulerTour { protected void visitExternal(Position p, Result r) { r.finalResult = (Integer) p.element(); } protected void visitRight(Position p, Result r) { Operator op = (Operator) p.element(); r.finalResult = op.operation( (Integer) r.leftResult, (Integer) r.rightResult ); } } Trees CSC311: Data Structures

21 Linked Structure for Trees
A node is represented by an object storing Element Parent node Sequence of children nodes Node objects implement the Position ADT B A D F B A D F C E C E Trees CSC311: Data Structures

22 Linked Structure for Binary Trees
A node is represented by an object storing Element Parent node Left child node Right child node Node objects implement the Position ADT B A D B A D C E C E Trees CSC311: Data Structures

23 Array-Based Representation of Binary Trees
nodes are stored in an array 1 A H G F E D C B J 2 3 let rank(node) be defined as follows: rank(root) = 1 if node is the left child of parent(node), rank(node) = 2*rank(parent(node)) if node is the right child of parent(node), rank(node) = 2*rank(parent(node))+1 4 5 6 7 10 11 Trees CSC311: Data Structures

24 Array-Based Representation of Binary Trees: Properties
Let n be the number of nodes of a binary tree T Let pM be the maximum value of rank(v) over all the nodes of T The array size N = pM+1 In the worst case, N = 2n Trees CSC311: Data Structures


Download ppt "Chapter 7: Trees Objectives:"

Similar presentations


Ads by Google