Presentation is loading. Please wait.

Presentation is loading. Please wait.

Thermoreflectance microscopy and spectroscopy on integrated circuits

Similar presentations


Presentation on theme: "Thermoreflectance microscopy and spectroscopy on integrated circuits"— Presentation transcript:

1 Thermoreflectance microscopy and spectroscopy on integrated circuits
M. Bardoux, C. Boué, C. Filloy, D. Fournier, G. Tessier UPR A005 CNRS, ESPCI, 10 Rue Vauquelin, Paris

2 1 Thermoreflectance under visible illumination

3 DR= DT CCD thermoreflectance imaging 4f < 40 Hz CCD White lamp
Optical measurement of DR (at virtually any wavelength) Filter measurement of DT Microscope Pow.1: f Circuit

4 CCD thermoreflectance imaging
FoR j FoRamb t FoDR I1 I2 I3 I4 4f < 40 Hz CCD White lamp Filter DR around 10-5 DT around 0.1 K Resolution 300 nm Microscope Amplitude Pow.1: f Circuit

5 Transistor arrays (ST Microelectronics)
Not leaky structures: leaky structures: 13 mm 125 mm IDS = mA, F=1 Hz l=518 nm 125 mm

6 Vertical Cavity Surface Emission Lasers (VCSELs)
M Bardoux, ESPCI, S. Bouchoule, A. Bousseksou, LPN Laser emission (1.5 mm) VCSEL Cleavage Vertical temperature distribution

7 90 mm 250 mm Side view (substrate, mirror, active layers)
Top view (emission facet) T (°C) Active layers Bragg mirror Substrate 90 mm 250 mm T (°C)

8 Numerical circuit 180 nm technology (TIMA Grenoble)
Clock frequency 225 MHz Lock-in at the repetition frequency of the test vectors (7.5 Hz) Thermoreflectance Resolution : 350 nm 80 mm T(K) Backside imaging ?

9 2 Near Infrared thermoreflectance

10 Thermoreflectance with an InGaAs camera
Si Transparency region 4f < 40 Hz InGaAs CCD White lamp Microscope Non coherent sources eliminate interference in the substrate Pow.1: f

11 Near Infrared back side imaging
DR/R X50, 0.6N.A. objective Resolution 2 mm (Diffraction limit : 1.7 mm) Dissipated power : 500 mW

12 DR/R Resolution difficult to assess (noisy image) Average of FWHM : 650 nm Effective N.A. : 1.55 Diffraction limit with a 0.42 N.A. objective: 2.4 mm

13 3 Thermoreflectance and photoreflectance spectroscopy

14 Thermo-/photo- reflectance spectroscopy
Compact fibered spectrometer + focusing lens R and vary sharply due to interference CCD spectrometer Spatial selectivity : a few mm Spectral resolution : 1 nm typ. Sensitivity : DR/R~ in 1 min Filter White Lamp P. Supply 2: 4F Microscope P. Supply 1: F Circuit

15 Photoreflectance spectroscopy on passive materials
Amplitude DR/R Measurement l=615 nm F=0.5 Hz Heating l=10.6 mm SiO2 (glass) F=1 Hz CCD spectrometer Filter White Lamp F=3Hz P. Supply 2: 4F Microscope P. Supply 1: F Modulated CO2 laser F=7.5 Hz Sample 1850 mm

16 Gold nanospheres in silica (preliminary results)
M. Rashidi, B. Palpant, INSP x10-4 DR/R SiO2 + gold nanospheres (≈ 4 nm) Measurement DT ≈ 3 K t= 68 nm Heating l=10.6 mm Si substrate x10-3 DR/R Model DT=50 K Majid Rashidi, INSP

17 Conclusions 1 ) Visible thermoreflectance resolution ≈ 300 nm
precision of calibrated measurement ≈ 5% 2 ) NIR imaging with Solid Immersion Lenses - Resolution : 650 nm at l=1.65 nm, effective N.A.: 1.55 - Resolution improvement : use narrow band illumination better contact SIL / substrate 3) Spectroscopy Fast and sensitive DR/R~ in 1 min Good spectral resolution (1 nm) Performance spectrometer dependent DR/R~ should be achievable in 1 min with a e- well depth.


Download ppt "Thermoreflectance microscopy and spectroscopy on integrated circuits"

Similar presentations


Ads by Google