Presentation is loading. Please wait.

Presentation is loading. Please wait.

New types of sub-atomic particles Stephen L. Olsen University of Hawai’i uc u ccc u d u s d.

Similar presentations


Presentation on theme: "New types of sub-atomic particles Stephen L. Olsen University of Hawai’i uc u ccc u d u s d."— Presentation transcript:

1 New types of sub-atomic particles Stephen L. Olsen University of Hawai’i uc u ccc u d u s d

2 History: (hadrons) 1930’s: proton & neutron..all we need??? 1950’s: , , , , ,  … “Had I foreseen that, I would have gone into botany” – Fermi 1960’s: The 8-fold way “3 quarks for Müster Mark” 1970’s add charmed particles 1980’s & beauty 1990’s & (finally?) top chadwick Fermi Gell-Mann RichterTing Lederman PetersJones Zweig

3 Hadron “zoo” mesons baryons

4 Quarks restore economy ( & rescue future Fermis from Botany?) (& 3 antiquarks) Baryons: qqq Mesons: qq p: u +2/3 p: u -2/3 +:+: d -1/3 u +2/3 d +1/3 u -2/3 d +1//3 u +2/3 -:-: u -2/3 d +1/3 s +1/3 u +2/3 d -1/3 s -1/3 M. Gell-Mann 3 quarks Zweig

5 Fabulously successful, but… quarks are not seen why only qqq and qq combinations? What about spin-statistics?

6  s -1/3 2 of these s-quarks are in the same quantum state Das ist verboten!!

7 The strong interaction “charge” of each quark comes in 3 different varieties Y. Nambu O. Greenberg s -1/3 the 3 s -1/3 quarks in the  - have different color charges & evade Pauli --

8 QCD: Gauge theory for color charges generalization of QED    + i e A    + i  i G i QED gauge Xform QCD gauge Xform eight 3x3 SU(3) matrices 8 vector fields (gluons) 1 vector field (photon) scalar charge: e isovector charge: erebegerebeg QED QCD Nambu Gell-Mann & Fritzsch

9 Attractive configurations  ijk e i e j e k i ≠ j ≠ k  ij e i ejej same as the rules for combining colors to get white : add 3 primary colors or add color+complementary color antiquarks:  anticolor charges Hence the name: Quantum Chromodynamics quarks: e i e j e k  color charges ejej eiei ekek

10 Difference between QED & QCD QED: photons have no charge QCD: gluons carry color charges gluons interact with each other

11 QED  QCD difference  Coupling strength distance

12 Test QCD with 3-jet events (& deep inelastic scattering) rate for 3-jet events should decrease with E cm gluon ss

13 “running”  s Why are these people smiling?

14 Probe QCD from other directions non-qq or non-qqq hadron spectroscopies: Pentaquarks: e.g. an S=+1 baryon (only anti-s quark has S=+1) Glueballs: gluon-gluon color singlet states Multi-quark mesons: qq-gluon hybrid mesons uc u c cc u d u s d

15 Pentaquarks “Seen” in many experiments BaBar CDF but not seen in just as many others High interest: 1 st pentaquark paper has ~500 citations Belle BES

16 Experimental situation is messy (many contradictory results) NA49 pp @ E cm =17 GeV (fixed tgt) (PRL92, 052301: 237+ citations!) COMPASS  p @ E  =160 GeV (fixed tgt) 1862 ± 2 MeV FWHM = 17 MeV  = 5.6  (1862): qqssd 100s  of  (1530)s but no hint of  (1862) hep-ex/0503033

17 Pentaquark Scoreboard Positive signals Negative results Also: Belle Compass L3 Yes: 17 No: 17

18 Existence of Pentaquarks is not yet established

19 This talk: search for non-standard mesons with “hidden charm” standard cc mesons are: –best understood theoretically –narrow & non overlapping c + c systems are commonly produced in B meson decays. b c c s V cb cos  C CKM favored W-W- cc uc u c (i.e containing c & c)

20 Thanks to KEKB we have lots of B mesons (>1M BB pairs/day) >1fb -1 /day Design: 10 34

21 Is the X(3872) non-standard? B  K     J/  M(  J  )  ’      J/  X(3872)      J/  S.K. Choi et al PRL 91, 262001

22 Its existence is well established seen in 4 experiments X(3872) CDF X(3872) D0 hep-ex/0406022 9.4  11.6 

23 Is it a cc meson? These states are already identified 3872 MeV Could it be one of these?

24 no obvious cc assignment 3872  c ” h c ’  c1 ’  2  c2  3 M too low and  too small angular dist’n rules out 1   J/  way too small  c   too small;M(     ) wrong  c  & DD) too small  c should dominate SLO hep-ex/0407033

25 go back to square 1 Determine J PC quantum numbers of the X(3872) with minimal assumptions

26 J PC possibilities (for J ≤ 2) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed 1 - - DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2- -(2)2- -(2) 2 - + (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

27 J PC possibilities 0 -- ruled out; J P =0 +,1 - & 2 + unlikely 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed 1 - - DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2- -(2)2- -(2) 2 - + (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

28 Areas of investigation Search for radiative decays Angular correlations in X   J/  decays Fits to the M(  ) distribution Search for X(3872)  D 0 D 0  0

29 Search for X(3872)   J/ 

30 Kinematic variables CM energy difference: Beam-constrained mass:  B  K  J  B  K  J  B   B ϒ (4S) E cm /2 ee ee M bc EE

31 Select B  K  J/  B  K  c1 ;  c1   J/  X(3872)? 13.6 ± 4.4 X(3872)   J/  evts (>5  significance) M(  J/  ) Bf(X   J/  ) Bf(X   J/  ) =0.14 ± 0.05 M bc

32 Evidence for X(3872)        J/   reported last summer hep-ex/0408116) 12.4 ± 4.2 evts B-meson yields vs M(       ) Br(X  3  J/  ) Br(X  2  J/  ) = 1.0 ± 0.5 Large (near max) Isospin violation!!

33 C=+1 is established B   J/  only allowed for C=+1 same for X  ”  ”J/  (reported earlier) M(  ) for X      J/  looks like a 

34 J PC possibilities (C=-1 ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed 1 - - DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2 - - (  2 ) 2 - + (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

35 Angular Correlations K  J/  J=0 X 3872 J z =0 z

36 Strategy: for each J PC, find a distrib  0 if we see any events there, we can rule it out Rosner (PRD 70 094023) Bugg (PRD 71 016006) Suzuki, Pakvasa (PLB 579 67)

37 Use 250 fb -1  ~275M BB prs exploit the excellent S/N Signal (47 ev) Sidebands (114/10 = 11.4 ev) X       J/   ’      J/ 

38 0 -+ 0 -+ : sin 2  sin 2  safe to rule out 0 -+   |cos  | |cos  |  2 /dof=34/9  2 /dof=18/9

39 0 ++ ll In the limit where X(3872), , & J/  rest frames coincide: d  /dcos  l   sin 2  l  rule out 0 ++  2 /dof = 41/9 |cos  l  |

40 1 ++ ll  1 ++ : sin 2  l sin 2  K 1 ++ looks okay! compute angles in X(3872) restframe |cos  l |  2 /dof = 11/9 |cos  |  2 /dof = 5/9

41 J PC possibilities (0 -+ & 0 ++ ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed 1 - - DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2 - - (  2 ) 2 - + (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

42 Fits to the M(  ) Distribution X   J/  in P-wave has a q* 3 centrifugal barrier X J/   q*

43 M(  ) can distinguish  -J/  S- & P-waves S-wave:  2 / dof = 43/39 P-wave:  2 / dof = 71/39 q* roll-off q* 3 roll-off (CL=0.1%) (CL= 28%) Shape of M(  ) distribution near the kinematic limit favors S-wave

44 Possible J PC values (J -+ ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed 1 - - DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2 - - (  2 ) 2 - + (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed

45 Search for X  D 0 D 0  0

46 Select B  KD 0 D 0  0 events |  E| 11.3±3.6 sig.evts (5.6  ) Bf(B  KX)Bf(X  DD  )=2.2 ± 0.7 ± 0.4x10 -4 Preliminary D *0  D 0  0 ? M(D 0 D 0  0 )

47 X  DD  rules out 2 ++ 1 ++ : DD  in an S-wave  q* 2 ++ : DD  in a D-wave  q* 5 Strong threshold suppression

48 Possible J PC values (2 ++ ruled out) 0 -- exotic violates parity 0 -+ (  c ” ) 0 ++ DD allowed (  c0 ’ ) 0 +- exotic DD allowed 1 - - DD allowed (  (3S)) 1 -+ exotic DD allowed 1 ++ (  c1 ’ ) 1 +- (h c ’ ) 2 - - (  2 ) 2 - + (  c2 ) 2 ++ DD allowed  c2 ’ ) 2 +- exotic DD allowed 1 ++

49 can it be a 1 ++ cc state? 1 ++   c1 ’ –Mass is ~100 MeV off –  c1 ’   J/  not allowed by isospin. Expect: Bf(  c1 ’   J/  )<0.1% BaBar measurement: Bf(X   J/  )>4% 3872 -   (  c1 ’   J/  ) /  (  c1 ’   J/  ) Theory: ~ 40 Expt: 0.14 ± 0.05  c1 ’ component of the X(3872) is ≤ few %

50 Intriguing fact M X3872 =3872 ± 0.6 ± 0.5 MeV m D0 + m D0* = 3871.2 ± 1.0 MeV lowest mass charmed meson lowest mass spin=1 charmed meson X(3872) is very near DD* threshold. is it somehow related to that?

51 hh bound states (hadronium)? pn DD* deuteron: 2 loosely bound qqq color singlets with M d = m p +m n -  hadronium (dueson) : 2 loosely bound qq color singlets with M = m D + m D* -  attractive nuclear force attractive force?? There is lots of literature about this possibility   N. Tornqvist hep-ph/0308277 u c u c

52 X(3872) = D 0 D* 0 bound state? J PC = 1 ++ is favored M ≈ m D0 + m D0* Maximal isospin violation is natural ( & was predicted) : |I=1; I z = 0> = 1/  2 (|D + D* - >+ |D 0 D* 0 >) |I=0; I z = 0> = 1/  2 (|D + D* - > - |D 0 D* 0 >)  |D 0 D* 0 > = 1/  2 (|10> - |00>)  (X   J/  ) <  (X   J/  ) was predicted Equal mixture of I=1 & I =0 Swanson PLB 598, 197 (2004) Tornqvist PLB 590, 209 (2004) Swanson PLB 588, 189 (2004)

53 X(3872) conclusion Not a cc state Matches all(?) expectations for a D 0 D* 0 bound state CC u c u c 1 st clear example of a non-qq meson

54 Are there others? Is the X(3872) a one-of-a-kind curiousity? or the 1 st entry in a new spectroscopy? Look at other B decays  hadrons+J/  B  K  J/  B  K  J/  B  K  J/ 

55 B  K  J/  in Belle “Y(3940)” M≈3940 ± 11 MeV  ≈ 92 ± 24 MeV M bc S.K. Choi et al hep-ex/0408126  PRL

56 Y(3940): What is it? Charmonium? –Conventional wisdom:  J/  should not be a discovery mode for a cc state with mass above DD & DD* threshold! Some kind of  -J/  threshold interaction? –the J/  is not surrounded by brown muck; can it act like an ordinary hadron? J/  

57 Y(3940): What is it (cont’d) ? another tetraquark? –M ≈ 2m Ds –not seen in Y   J/  (  contains ss) –width too large?? –need to search for Y(3949)  D S D S s c s c ?? PRL 93, 041801 M(  J/  )

58 Y(3940): What is it (cont’d) ? cc-gluon hybrid? –predicted by QCD, –decays to DD and DD* are suppressed –large hadron+J/  widths are predicted –masses expected to be 4.3 ~ 4.4 GeV (higher than what we see) cc Horn & Mandula PRD 17 898 (1974)

59 Summary X(3872): –J PC established as 1 ++ –cc component is small (≤ few %) –all properties consistent with a D 0 D* 0 bound state uc u c 1 st unambiguous example of a non-standard meson Y(3940): –No obvious cc assignment –tetraquark seems unlikely –cc-gluon hybrid? cc ????? - Lots to do: determine J PC ; find other modes (DD*, D s D s, …?)

60 Mahalo

61 Back-up slides

62 Difference between QED & QCD QED: photons have no charge QCD: gluons carry color charges gluons interact with each other

63 Vacuum polarization QED vs QCD 2n f 11C A in QCD: C A =3, & this dominates

64 QED  QCD difference  Coupling strength distance

65 Testing the Standard Model QCD X Electro-Weak X QED decrease in  s with distance Lamb-shift g-2 Atomic spectra … W, Z & t masses Z width sin   W Asymmetries Cross-sections …

66 Tests of QED and EW sectors Electro-Weak sector (tested @ ~0.01% level) QED (tested @ ppb) Example: (g-2)/2| electron Expt: 1,159,652,188.4(4.3)x10 -12 Theory: 1,159,652,201.4(28)x10 -12

67 M(  J/  ) look-back plot

68 Another one? e + e -  J/  + X >4  )peak at M=3940  11 MeV N=148  33 evts Width consistent w/ resolution (= 32 MeV) cc cc  c0 cc ‘ ‘ What is it?  c0 ?  c ?? ‘“

69 Look at e + e -  J/  D(D ( * ) ) Reconstruct a J/  & a D use D 0  K -  + & D +  K -  +  + Determine recoil mass

70 Look at M(DD ( * ) ) DD* DD 3940 MeV 9.9 ± 3.3 evts (4.5  ) 4.1 ± 2.2 evts (2.1  )  c0  DD* ‘  c  DD “

71 Other hadronium states? M=1859 MeV/c 2  < 30 MeV/c 2 (90% CL) J/    pp in the BES expt M(pp)-2m p (GeV) 00.10.20.3 acceptance  2 /dof=56/56 fitted peak location +3 +5  10  25 J.Z.Bai PRL 91,022001(2003)


Download ppt "New types of sub-atomic particles Stephen L. Olsen University of Hawai’i uc u ccc u d u s d."

Similar presentations


Ads by Google