Download presentation
1
Metadata for Web-based Information Management
Dickson K. W. CHIU Senior Member, IEEE & ACM Dickson Computer Systems Hong Kong Poon, Joe Kit Man Lam, Wai Chun Tse, Chi Yung Sui, William Hi Tai Poon, Wing Sze Department of Computer Science, University of Hong Kong
2
Towards a Semantic Web WWW is an impressive success:
amount of available information (> 1 Giga-page) number of human users (> 200 Mega-user) The current Web represents information using natural language (English, Hungarian, Chinese,…) graphics, multimedia, page layout Humans can process this easily can deduce facts from partial information can create mental associations are used to various sensory information (well, sort of… people with disabilities may have serious problems on the Web with rich media!) Ontology Dickson Chiu - update 2009
3
Need for understanding Web info
Tasks often require to combine data on the Web: hotel and travel infos may come from different sites searches in different digital libraries etc. Again, humans combine these information easily even if different terminologies are used! Ontology Dickson Chiu - update 2009
4
What is the Problem? Consider a typical web page: Markup comprise
rendering information (e.g., font size and colour) Hyper-links to related content Semantic content is accessible to humans but not (easily) to computers… Consider a typical web page: Ontology Dickson Chiu - update 2009
5
What information can we see…
WWW2002 The eleventh international world wide web conference Sheraton waikiki hotel Honolulu, hawaii, USA 7-11 may 2002 1 location 5 days learn interact Registered participants coming from australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland, italy, japan, malta, new zealand, the netherlands, norway, singapore, switzerland, the united kingdom, the united states, vietnam, zaire Register now On the 7th May Honolulu will provide the backdrop of the eleventh international world wide web conference. This prestigious event … Speakers confirmed Tim berners-lee Tim is the well known inventor of the Web, … Ian Foster Ian is the pioneer of the Grid, the next generation internet … Ontology Dickson Chiu - update 2009
6
Information a machine may see…
WWW2002 The eleventh international world wide web conference Sheraton waikiki hotel Honolulu, hawaii, USA 7-11 may 2002 1 location 5 days learn interact Registered participants coming from australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland, italy, japan, malta, new zealand, the netherlands, norway, singapore, switzerland, the united kingdom, the united states, vietnam, zaire Register now On the 7th May Honolulu will provide the backdrop of the eleventh international world wide web conference. This prestigious event … Speakers confirmed Tim berners-lee Tim is the well known inventor of the Web, … Ian Foster Ian is the pioneer of the Grid, the next generation internet … Ontology Dickson Chiu - update 2009
7
Solution: XML markup with “meaningful” tags?
<name>WWW2002 The eleventh international world wide webcon</name> <location>Sheraton waikiki hotel Honolulu, hawaii, USA</location>… How about… <conf>WWW2002 The eleventh international world wide webcon</conf> <place>Sheraton waikiki hotel Honolulu, hawaii, USA</place> Then how about… <会议>WWW2002 The eleventh international world wide webcon</会议> <地点>Sheraton waikiki hotel Honolulu, hawaii, USA</地点> Ontology Dickson Chiu - update 2009
8
What Is Needed? A resource should provide information about itself
also called “metadata” (data about data) Metadata capture part of the meaning of data metadata should be in a machine processable format agents should be able to “reason” about (meta)data metadata vocabularies should be defined Ontology Dickson Chiu - update 2009
9
What Is Needed (Technically)?
To make metadata machine processable, we need: unambiguous names for resources (URIs) a common data model for expressing metadata (RDF) and ways to access the metadata on the Web common vocabularies (Ontologies) The “Semantic Web” is a metadata based infrastructure for reasoning on the Web It extends the current Web (and does not replace it) Ontology Dickson Chiu - update 2009
10
Ontology: Origins and History
Ontology in Philosophy - a philosophical discipline—a branch of philosophy that deals with the nature and the organization of reality Science of Being (Aristotle, Metaphysics, IV, 1) studies being or existence as well as the basic categories thereof trying to find out what entities and what types of entities exist has strong implications for the conceptions of reality. Ontology Dickson Chiu - update 2009
11
Ontology in Computer Science
An ontology is an engineering artifact [Neches91]: defines basic terms and relations comprising the vocabulary of a topic area the rules for combining terms and relations to define extensions to the vocabulary “An explicit specification of a conceptualization” [Gruber93] Formal specification of a shared conceptualization (of a certain domain) [Borst 97]: Shared understanding of a domain of interest Formal and machine manipulable model of a domain of interest Ontology Dickson Chiu - update 2009
12
Ontology Elements Concepts (classes) + their hierarchy
Concept properties (slots / attributes) Property restrictions (type, cardinality, domain, etc.) Relations between concepts (disjoint, equality, etc.) Instances E-R diagram / UML diagram ??? Note: “Property” “Slot” “Relation” “Relationtype” “Attribute” Semantic link type” Ontology Dickson Chiu - update 2009
13
Ontology Languages RDF Schema
RDF is a data model for objects and relations between them RDF Schema is a vocabulary description language Describes properties and classes of RDF resources Provides semantics for generalization hierarchies of properties and classes Ontology Dickson Chiu - update 2009
14
Web Ontology Languages (2)
OWL A richer ontology language relations between classes e.g., disjointness cardinality e.g. “exactly one” richer typing of properties characteristics of properties (e.g., symmetry) Logic BOTH are standards of Ontology Dickson Chiu - update 2009
15
History of the Semantic Web
Web was “invented” by Tim Berners-Lee (amongst others), a physicist working at CERN TBL’s original vision of the Web was much more ambitious than the reality of the existing (syntactic) Web: TBL (and others) have since been working towards realising this vision, which has become known as the Semantic Web E.g., article in May 2001 issue of Scientific American… “... a goal of the Web was that, if the interaction between person and hypertext could be so intuitive that the machine-readable information space gave an accurate representation of the state of people's thoughts, interactions, and work patterns, then machine analysis could become a very powerful management tool, seeing patterns in our work and facilitating our working together through the typical problems which beset the management of large organizations.” Ontology Dickson Chiu - update 2009
16
Adding “Semantics” External agreement on meaning of annotations
E.g., Dublin Core ( Agree on the meaning of a set of annotation tags Problems with this approach Inflexible Limited number of things can be expressed Use Ontologies to specify meaning of annotations Ontologies provide a vocabulary of terms New terms can be formed by combining existing ones Meaning (semantics) of such terms is formally specified Can also specify relationships between terms in multiple ontologies Ontology Dickson Chiu - update 2009
17
Berner-Lee’s Architecture
??? Semantics+reasoning ? Relational Data ? Data Exchange Relationship between layers is not clear OWL DL extends “DL subset” of RDF Ontology Dickson Chiu - update 2009
18
The Role of Ontologies on the Web
Ontologies provide a shared understanding of a domain: semantic interoperability overcome differences in terminology mappings between ontologies Ontologies are useful for the organization and navigation of Web sites Ontologies are useful for improving the accuracy of Web searches search engines can look for pages that refer to a precise concept in an ontology Web searches can exploit generalization/ specialization information If a query fails to find any relevant documents, the search engine may suggest to the user a more general query. If too many answers are retrieved, the search engine may suggest to the user some specializations. General e-business automation based on understanding web resource in order to facilitate intelligent (software agent) processing Ontology Dickson Chiu - update 2009
19
Case study: Use of Ontology in an e-Marketplace
D.K.W. Chiu, J.K.M. Poon, W.C. Lam, C.Y. Tse, W.H.T. Siu, W.S. Poon. How Ontologies Can Help in an E-marketplace, European Conference on Information Systems 2005 (ECIS 2005), May 2005 Semantic Web vision is probably too ambitious A more realistic current application that has a potential to become a killer application Ontology Dickson Chiu - update 2009
20
Motivation Compare some general-purposed e-Marketplaces (auction based) e-Bay (HK): Yahoo Auction (HK): auctions.yahoo.com.hk Taobao owned by Alibaba.com: (See also Alibaba.com: Compare special-purposed e-Marketplaces Airtickets: Finding friends (!): Which one is better? Why? Key issue => capturing and applying domain knowledge Ontology Dickson Chiu - update 2009
21
What is an e-Marketplace?
Suppliers e - Marketplace offers Aggregate requests Repository bids from Buyers, contact potential Suppliers, Ontologies and Concepts match Suppliers e - Negotiation data offers and Buyers, exchange Agreements - … bids and offers, generate e - Contract bids Buyers Ontology Dickson Chiu - update 2009
22
Problem Statements Are there currently significant practical use of the Ontology from Semantic Web? Match-making and beyond Software requirement engineering / negotiation Model and solve practical problems with CS & ICT Cross-over multi-disciplinary research IJSSOE: Dickson Chiu, Editor-in-chief Ontology Dickson Chiu - update 2009
23
Example Ontology Clothing and Sales Negotiation
Quantity Purple Red Discount Total Amount Refunding Policy Color Size Appearance Clothing Unit Cost Payee Insured Amount Insurer Premium {unordered} attributes: deposit, installment, pay-upon-delivery, ... {unordered} attributes: brick red, crimson, ... {ordered} attributes: small, medium, large, extra-large attributes: light purple, magenta, ... Delivery Date Sale Order * Delivery Shipping Cost Payment Terms Insurance Ontology Dickson Chiu - update 2009
24
Objective and Solution Approach
How to elicit negotiation requirements? Semantic Web => Ontologies => help negotiators’ mutual understanding of issues, alternatives, and tradeoffs Address semantic requirements of negotiation Reduce cost and improve effectiveness of negotiation (avoid combinatorial explosion of issues) Development of an effective and efficient negotiation plan Applications: e-Marketplace, Web-service negotiation, agent negotiation, requirement negotiation… Ontology Dickson Chiu - update 2009
25
Semantic based e-Marketplace Conceptual Model
Ontology Dickson Chiu - update 2009
26
Overall e-Negotiation Process Design Methodology
Requirements elicitation phase Decision phase Ontology Dickson Chiu - update 2009
27
Requirement Elicitation Methodology
Traders select agreed ontology. Traders relate requirements to concepts in the selected ontology. System checks dependencies of concepts that constitute all the requirements from the (refined) ontology map. Mutually dependent clusters of concepts determine the indivisible groups of requirements that have to be considered together so that effective tradeoff can be evaluated. The system checks the consistency of all the concepts, issues, and their dependencies (Cheung et al. 2002). For a consistent plan, the system can proceed to elicit the possible alternatives; otherwise we have to re-iterate from step 3. According to the dependencies, the system can formulate a precedence graph of the requirements and requirements groups. Based on the precedence graph, an efficient decision plan can be determined. Ontology Dickson Chiu - update 2009
28
Decision Phase Methodology
The system searches for the matching offers based on the trader’s preference attempt to rank them for the trader to choose Trader may accept any matched offers or change his reservation price and attempt a negotiation with those offers in order to seek for a more favorable one. If no matching offers are found, the system identifies near misses and also attempts to rank them for the trader to choose. Trader change his mind to accept a near miss or choose a near miss for negotiation. During negotiation, the system supports the user to make and evaluate offers / counter-offers based on the decision plan (from previous slide) in a negotiation session as follows (Chiu et al. 2005). Should new requirement issues arise in the decision phase (say, due to incomplete specification), the trader can we can go back to analyze the new issue and its relationships to the existing ones. In real-life, the formulation of a decision plan may involve several iterations. This reflects the traders may not be able to understand all the inter-relationships among the issues in one shot. Ontology Dickson Chiu - update 2009
29
Understanding Requirements from Ontologies
Perform graph search algorithm on the semantic map Key requirements are preliminary identified in the first round (e.g., unit price, quantity) For each identified requirement issue, check if an issue can be mapped directly to a concept. If not, see if an issue can be refined into a set of more specific concepts a cost is refined into constituent costs that sum up to it. Incomplete Ontologies Introduce new concepts into the ontology map Relate it with to existing ones Ontology Dickson Chiu - update 2009
30
Understanding Requirements from Ontology (Cont)
Perform graph search algorithm on the semantic map For each identified concept c, Examine every un-visited node n adjacent to c in the ontology map. For each such node n, see if the new concept is relevant to the negotiation problem. Repeat until no more related new concepts can be identified. Only after successful deal do we need to consider combining newly identified working concepts back to more concise real-life objects in specifying a agreement E.g., component costs need not shown to business partner Ontology Dickson Chiu - update 2009
31
Understanding Dependencies of Requirements from Ontologies
Functional dependency borrowed from fundamental relational database concepts motivate this research The alternative for an issue is determined by the alternatives(s) of other issue(s). E.g., delivery date and quantity -> cost of production Computational dependency more obvious type of functional dependency hardwired computational formula E.g., insurance amount = percentage * cost of goods. Ontology Dickson Chiu - update 2009
32
Understanding Dependencies of Requirement from Ontology
Requirement dependency (constraint satisfaction) Only after the determinant value is known can viable alternatives be determined. E.g., whether a customer may pay by credit card, bank draft, or remittance is evaluated according to the total amount. Classification dependency A special type of requirement dependency in which the classification of another issue is dependent on the outcome of an agreed issue. E.g., customer tiering Ontology Dickson Chiu - update 2009
33
Indivisible Requirement Components for Tradeoff Evaluation
Indivisible Components of Issues Cyclic dependencies among the concepts Tradeoff Evaluation Topological sort of semantic graph gives negotiation plan Ontology Dickson Chiu - update 2009
34
Understanding Possible Requirement Alternatives from Ontology
Alternative for requirements are often in discrete values cannot be expressed in numerical values not quantized in normal practices because of difficulties in recognizing them, e.g., color for simplicity and convenience (size => S, M, L, XL) The elicitation of options is streamlined when a complicated issue is decomposed into concepts (appearance => size + color + shapes) Ontology provide explicit ordering of them (size => S < M < L < XL) implicit ordering inheritance (“is-a”) hierarchies composition hierarchies Ontology Dickson Chiu - update 2009
35
Exploring more trading opportunities from Ontology
Improve the accessibility of automated agents to match functional specification Intelligent software agents could represent buyers or sellers e-marketplace acts as “broker” Consider shared ontology attributes and constraints Map for cross-sale Group buyers or sellers together for higher market efficiencies Better hints for data mining Ontology Dickson Chiu - update 2009
36
System Implementation Architecture
Multiplatform Support Subsystem WAP Gateway SMS Internet Messenger Web Server e-Negotiation Executing Subsystem e-Negotiation Session Manager Ontology Generator e-Negotiating Matching Subsystem Process Generator Task Organizer Issue Dependency Editor issue dependency task Ontology Maintenance Subsystem Search Engine Criteria & Issues Editor ontology Criteria Issue bids & offers e-Negotiation process revised ontology, issues existing Data & Repository Multiplatform Devices Ontology Dickson Chiu - update 2009
37
OWL Listing <rdf:rest rdf:resource=" <rdf:first rdf:datatype=" <rdf:first rdf:datatype=" <rdf:first rdf:datatype=" <rdf:first rdf:datatype=" Large</rdf:first></rdf:List> </owl:oneOf></owl:DataRange></rdfs:range> </owl:DatatypeProperty> <owl:Class rdf:ID=" UnitCost"> … <owl:equivalentClass> <!-- unit cost depends on appearance --> <owl:Restriction> <owl:someValuesFrom rdf:resource="#Appearance" /> </owl:Restriction> </owl:equivalentClass> </owl:Class>… </owl:Ontology> <owl:Ontology rdf:about="#Clothing"> <rdfs:comment>Sample Clothing Ontology</rdfs:comment> <owl:Class rdf:ID="Clothing" /> <owl:Class rdf:ID="Appearance" /> <owl:Class rdf:ID="Color"> <rdfs:subClassOf rdf:resource="#Appearance" /> ... </owl:Class> <owl:ObjectProperty rdf:ID="hasAppearance"> <rdfs:domain rdf:resource="#Clothing" /> <rdfs:range rdf:resource="#Appearance" /> </owl:ObjectProperty> <owl:ObjectProperty rdf:ID="hasColor"> <rdfs:subPropertyOf rdf:resource="hasClothAppearance" /> <rdfs:range rdf:resource="#Color” /> <owl:DatatypeProperty rdf:ID="size"> <!-- Enumeration --!> <rdfs:domain rdf:resource="#Appearance"/> <rdfs:range> <owl:DataRange> <owl:oneOf> <rdf:List> <rdf:rest> <rdf:List> <rdf:rest><rdf:List> <rdf:rest><rdf:List> Ontology Dickson Chiu - update 2009
38
Summary Function Traditional e-marketplace problem
Contributions of Ontology Match-making Match-making is often ineffective because of the rigid definition of products of limited attributes. Shared and agreed ontology provides common, flexible, and extensible definitions of products and requirements for match-making and subsequent business processes It is difficult to specify complex product requirements because the relationships among attributes and values are ignored. Complicated requirements can be decomposed into simple concepts for streamlining the elicitation of options User interactions are limited to mainly manually, which is time consuming. Accessible by automated agents through Semantic Web specifications for more business opportunities Recom-mendation Recommendations are often only possible within the same category. Ontology helps elicit alternatives for recommendation. Pre-set formulae for every type of product are needed for evaluation. Ontology help recommendation by evaluating offers in terms of flexible overall scaling Cross-sale and grouping of buyers and sellers with similar requests are difficult. Matching grouping of buyers and sellers as well as cross-sale possible by inference with the ontology. Negotiation No implicit ordering of alternatives. Implicit ordering of alternatives is elicited via inheritance. Manual negotiation or inadequate negotiation support cause inefficient process and ineffective recognition. Machine understandable semantics facilitate negotiation and automatic configuration of products and services as specified. Ontology Dickson Chiu - update 2009
39
Conclusions Formulation of negotiation plan with maturing of Semantic Web technologies Elicitation of negotiation issues, issue dependencies, tradeoff, and alternatives Control the openness of issues Our algorithm verifies the completeness of elicited negotiation requirements Negotiation processes are properly guided, recorded, and managed For e-commerce activities are usually more structural and repeatable (as opposed to political negotiations) Ontologies and plans are therefore reusable Negotiation automation with agents / integration with EIS Ontology Dickson Chiu - update 2009
40
Future Work Formal models Elicitation of semantic distances
enhancement of ontology-based matchmaking and recommendation algorithms ontology-based cross-sale and up-sale grouping of buyers and sellers for combined quantity deals mobile clients and constraint-based requirement specification Ontology Dickson Chiu - update 2009
41
Thank you! Question and Answer
Ontology Dickson Chiu - update 2009
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.